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Previously on INF2D

Backward chaining

— if Goal is known (goal directed)
— can query for data

Forward chaining

— if specific Goal is not known, but the system needs to
react to new facts (data driven)
— can make suggestions

What do users expect from the system?
Which direction has the larger branching factor?
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Limitations

...due to restriction to definite clauses

In order to apply GMP

* premises of rules contain only non-negated symbols
* the conclusion of any rule is a non-negated symbol

* facts are non-negated atomic sentences

Possible solution: introduce more variables, e.g. Q := =P

What about: “If we cannot prove 4, then =4 is true"?
(works only if there is a rule for each variable)
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Resolution one more time

Negate query a.

Convert everything to CNF.

Repeat: Choose clauses and resolve (based on unification).
If resolution results in empty clause, « is proved.

Return all substitutions (or Fail).
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Ground Binary Resolution & Modus Ponens

Ground binary resolution

CvP Dv =P
cvD

Suppose C = False.

P -PVD
D

i.e. P and P —» D entails D.

Modus ponens is a special case of binary resolution.
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Full Resolution & Generalised Modus Ponens

GMP with p;0 = p;0

P P2 Py P1ADLA APy = Q)
q0

DL P s Pn (QVADLV APy V .V —py)
q0

Full resolution with 8 mgu of all P; and P;

CVP,V..VP, DV APV ..V~=P,
(CvD) 6
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Resolution in Implication Form

Ground binary resolution

CvP Dv =P
cvD

Set C = —A.

A->P P-D
A—-D
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Example - Memes and Theorems

* Some students like all memes.

Fi: 3x.S(x) AVy.M(y) — Likes(x,y)

* No student likes any theorem.

Fy: Vx,y.S5(x) AT(y) = —Likes(x,y)

* Show: No meme is a theorem.

F: VxM(x)- -T(x)
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Example - Memes and Theorems

Memes that
are not about
themselves

A meme about
| memes that
are not about

themselves
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Example - Memes and Theorems

CNF - Eliminating implications
Fi: 3x.S(x)AVy.M(y) — Likes(x, y)

Ax.S(x) AVy.~M(y) V Likes(x, y)

Fy: Vx,y.5(x) AT(y) — —Likes(x,y)
Vx,y.~S(x) vV =T (y) V —Likes(x, y)

F: VxM(x)—- —=T(x)
Vx.—M(x) v =T (x)
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Example - Memes and Theorems

CNF - Standardising variables apart, skolemising, dropping
universal quantifiers

Fi:+  IxS(x)AVy.-M(y)V Likes(x,y)
S(G) A (=M (y) Vv Likes(G, y))

Fy: Vx,y=S(x)V aT(y) Vv —Likes(x, y)
=S(w) vV =T (z) v —Likes(w, z)

F: Vx~aM(x)v-T(x)
—|M(x) \% —|T(X)

11/ 26



Example - Memes and Theorems

Unification

Fi: S(G)A(=M(@y) vV Likes(G,y))

Fy:  =S(w)V aT(z) Vv —Likes(w, z)
w/G : =S5(G) Vv =T (z) Vv —Likes(G, z)

Negation of proof goal

—(=M(x) VAT (x)) = M(x) AT(x)
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Example - Memes and Theorems

S(G) A (=M (y) Vv Likes(G, y))
=5(G) V =T (2) v —Likes(G, z)
M(x) AT (x)

Clauses: S(G), M(x), T(x), -M(y) v Likes(G, y),
=5(G) vV =T (z) Vv —Likes(G, z)

S(@) =S(G) vV =T (z) Vv —Likes(G, z)
=T (z) vV —Likes(G, z)

- M(y) V Likes(G, y) —T(z) vV —Likes(G, z)
—|M(Z) \% —|T(Z)
Substitute z/x

—M(x) v =T (x) M(x) d =T (x) T(x)
T an 0

Therefore, =M (x) v =T (x), i.e. M(x) » =T (x).
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Example - Memes and Theorems 2.0

* Some students like all memes.

Fy: 3JxS(x)AVy.M(y) - Likes(x,y)

* No student likes any theorem.

Fy: Vx.S(x) - Vy.T(y) - —Likes(x,y)

* Show: No meme is a theorem.

F: Vx.M(x) - —T(x)
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Example - Memes and Theorems 2.0

CNF - Eliminating implications
Fi: 3x.S(x)AVy.M(y) — Likes(x, y)

Ax.S(x) AVy.~M(y) V Likes(x, y)

Fy: Vx.S(x) - Vy.T(y) - —Likes(x,y)
Vx.—S(x) vV Vy.~T(y) v =Likes(x, y)

F: VxM(x)—- —=T(x)
Vx.—M(x) v =T (x)
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Example - Memes and Theorems 2.0

CNF - Standardising variables apart, skolemising, dropping
universal quantifiers

Fi:+  IxS(x)AVy.-M(y)V Likes(x,y)

S(G) A (=M (y) Vv Likes(G, y))

Fy:  Vx.=S(x)VVy=T(y)V —Likes(x,y)
-S(w) Vv (=T (2) v —Likes(w, z))

F: Vx~aM(x)v-T(x)
—|M(x) \% —|T(X)
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Resolution - Soundness and completeness

Resolution is sound and complete.
A set of clauses S is unsatisfiable if and only if one can derive
the empty clause (false) from S.

Soundness: derivability of empty clause implies unsatisfiability.

Can be proved by noticing that every model that satisfies the
premises of resolution satisfies also satisfies its conclusion.

Completeness: every unsatisfiable clause can be refuted by
resolution.

Can be proved using completeness of propositional resolution
and lifting (as in the following slides; the full proof is beyond
the scope of this course).
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Resolution - Completeness proof

Any set of sentences S is representable in clausal form

\

Assume S is unsatisfiable, and in clausal form

\

Some set S' of ground instances is unsatisfiable

\

Resolution can find

a contradiction in S'

\

There is a resolution proof for the contradiction in S'

Herbrand’s theorem

Ground resolution
theorem

Lifting lemma
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Completeness proof - Step 1

For a set of clauses S, we call the Herbrand universe of S the
set Hg of all ground terms that can be constructed from the
function symbols in S.

Example
For S = {=P(x,F(x,A)) V=Q(x,A) V R(x,B)} we have
Hg ={A,B,F(A,A),F(A B),F(B,A),F(B,B),F(A,F(4,4)),..}
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Completeness proof - Step 1

For a set of clauses S and P a set of ground terms,

P(S), the saturation of S with respect to P, is the set of all
ground clauses obtained by applying all possible consistent
substitutions of variables in S with ground terms from P.

The saturation of a set S with respect to its Herbrand
universe is called the Herbrand base of S and denoted H(S).

Example

H(S) = {~P(A, F(A,A) V ~Q(A,A) V R(A,B),
—~P(B,F(B,A)) VvV ~Q(B,A) vV R(B, B),
—~P(F(A,A), F(F(A, A),A)) V ~Q(F (A, A), A) V R(F(4, A), B),
—~P(F(A,B), F(F(A,B),A))V—Q(F(4,B), A)VR(F(A B),B) , ..}
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Completeness proof - Step 1

Herbrand's theorem (1930)

If a set S of clauses is unsatisfiable, then there exists a finite
subset of Hg(S) that is also unsatisfiable.
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Completeness proof - Step 2

Let S’ be that finite unsatisfiable subset of ground sentences.

Running propositional resolution to completion on S’ will
derive a contradiction.
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Completeness proof - Step 3

Lifting lemma

Let C; and C, be two clauses with no shared variables, and
let C; and Cj ground instances of C; and C,.

If C' is a resolvent of €] and C3, then there exists a clause C
such that:

C is a resolvent of C; and C,
C' is a ground instance of C.

C,,C, instantiation (1,C;
l l
c, C, Ci C;
C’

l
C instantiation c’

lifting

«— O
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Completeness proof - Step 3

Example

C, = =P(x,F(x,4)) V ~Q(x,A) V R(x, B)

C, ==N(G(y),z) VPHY) 2)
Ci=-P(H(B),F(H(B),A)) vV -Q(H(B),A) vV R(H(B),B)
C; = aN(G(B),F(H(B),A)) vV P(H(B),F(H(B), 4))

C' =-N(G(B),F(H(B),A)) V-Q(H(B),A) VR(H(B),B)
C==NGW) F(HY),A)V-QHY),A)VRH(),B)
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Efficient algorithms for resolution

Heuristics to make resolution more efficient:

Unit preference: prefer clauses with only one symbol.

Pure clauses: a pure clause contains symbol A which does

not occur in any other clause. Cannot lead to contradiction.

Tautology: clauses containing A and —A.
Set of support: identify useful clauses and ignore the rest.

Input resolution: intermediately generated clauses can only
be combined with original input clauses.

Subsumption: if a clause contains another one, use only the
shorter clause. Prune unnecessary facts from the KB.

Including heuristics, resolution is more efficient than DPLL.
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Summary

* Limitations of GMP

* Relationship between inference rules

* Completeness of resolution — the lifting lemma
* Efficient algorithms for resolution
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