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Outline

• Reducing first-order inference to propositional inference
• Unification
• Generalized Modus Ponens
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Substitutions
Let (𝐹, 𝑃) be a FOL signature and 𝑋, 𝑌 sets of variables.

A substitution of variables from 𝑋 with terms over 𝑌 is a
function 𝜃∶ 𝑋 → 𝑇ி(𝑌).

A substitution 𝜃 can be extended to ෤𝜃 ∶ 𝑇ி(𝑋) → 𝑇ி(𝑌):

෤𝜃(𝜎(𝑡ଵ, … , 𝑡௡) = 𝜎( ෤𝜃(𝑡ଵ), … , ෤𝜃(𝑡௡))

for 𝜎 ∈ 𝐹௡, 𝑡ଵ, … , 𝑡௡ ∈ 𝑇ி(𝑋).
In particular, ෤𝜃(𝜎) = 𝜎 for 𝜎 ∈ 𝐹଴.

{𝑥ଵ/𝑡ଵ, … , 𝑥௡/𝑡௡} is a notation for 𝜃∶ 𝑋 → 𝑇ி(𝑌) where
• 𝑌 is the set of all variables occuring in the terms 𝑡௜

• 𝜃(𝑥௜) = 𝑡௜, for 𝑖 = 1, … , 𝑛, and 𝜃(𝑥) = 𝑥 for 𝑥 ≠ 𝑥௜
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Substitutions

Let (𝐹, 𝑃) be a FOL signature and 𝑋, 𝑌, 𝑍 sets of variables.

Applying substitutions to sentences

We denote by 𝜑 𝜃 the result of applying the substitution
𝜃∶ 𝑋 → 𝑇ி(𝑌) to the sentence 𝜑:

𝜑 𝜃 =

⎧
⎪
⎪
⎪

⎨
⎪
⎪
⎪
⎩

𝜋( ෤𝜃(𝑡ଵ), … , ෤𝜃(𝑡௡)) for 𝜑 = 𝜋(𝑡ଵ, … , 𝑡௡)

෤𝜃(𝑡) = ෤𝜃(𝑡ᇱ) for 𝜑 = (𝑡 = 𝑡ᇱ)

¬(𝜑ଵ 𝜃) for 𝜑 = ¬𝜑ଵ

(𝜑ଵ 𝜃) ∧ (𝜑ଶ 𝜃) for 𝜑 = 𝜑ଵ ∧ 𝜑ଶ

…

∀𝑍.(𝜑ଵ 𝜃௓) for 𝜑 = ∀𝑍.𝜑ଵ
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Substitutions ⋅ Composition

Let (𝐹, 𝑃) be a FOL signature and 𝑋, 𝑌, 𝑍 sets of variables.

Composing substitutions 𝜃∶ 𝑋 → 𝑇ி(𝑌) and 𝛿∶ 𝑌 → 𝑇ி(𝑍):
𝜃 ; 𝛿 ∶ 𝑋 → 𝑇ி(𝑍), with (𝜃 ; 𝛿)(𝑥) = (𝜃 ; ෤𝛿)(𝑥).

The composition of substitutions is associative.

The composition of substitutions is not commutative,
sometimes not even well defined.
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Universal instantiation

Every instantiation of a universally quantified sentence 𝜑 is
entailed by it:

∀𝑥.𝜑

𝜑{𝑥/𝑡}

for any variable 𝑥 and ground term 𝑡 (without variables).

Example

∀𝑥.King(𝑥) ∧ Greedy(𝑥) → Evil(𝑥)

King(John) ∧ Greedy(John) → Evil(John)

King(Richard) ∧ Greedy(Richard) → Evil(Richard)

King(Father(John)) ∧ Greedy(Father(John)) → Evil(Father(John))
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Existential instantiation

For any sentence 𝜑, variable 𝑥, and some constant 𝜎 that
does not appear elsewhere in the knowledge base:

∃𝑥.𝜑

𝜑{𝑥/𝜎}

Example

∃𝑥.Crown(𝑥) ∧ OnHead(𝑥, John) yields
Crown(𝐶) ∧ OnHead(𝐶, John)

with 𝐶 a new constant symbol, called a Skolem constant.
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Reduction to propositional inference

Consider a KB containing just the following:
∀𝑥.King(𝑥) ∧ Greedy(𝑥) → Evil(𝑥)

King(John),Greedy(John),Brother(Richard, John)

Instantiating the universal sentence in all possible ways
(using substitutions {𝑥/John} and {𝑥/Richard}) we obtain:
King(John) ∧ Greedy(John) → Evil(John)

King(Richard) ∧ Greedy(Richard) → Evil(Richard)

The universal sentence can then be discarded.

The new KB is essentially propositional if we view the atomic
sentences King(John),Greedy(John), Evil(John),King(Richard),…
as propositional symbols.

8 / 26



Reduction to propositional inference

Every first-order KB and query can be propositionalized such
that entailment is preserved.

A ground sentence is entailed by the new KB iff it is
entailed by the original KB.

Idea

Propositionalise KB and query and apply DPLL (or some
other complete propositional method).

Problem

If the KB includes a function symbol, the set of possible
ground-term substitutions is infinite.

Eg. infinitely many nested terms such as
Father(Father(Father(John)))
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Herbrand’s theorem

Theorem (Herbrand, 1930). If a sentence 𝜑 is entailed
by a first-order KB, then it is entailed by a finite subset of
the propositionalised KB.

Idea

for 𝑛 = 0 to ∞ do
create a propositional KB by instantiating with depth-𝑛 terms
see if 𝜑 is entailed by this KB

Problem

Works if 𝜑 is entailed, loops forever if it is not entailed.
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Semidecidability

Theorem (Turing, 1936. Church, 1936).
Entailment for first-order logic is semidecidable.

Algorithms exist that say yes to every entailed sentence, but
no algorithm exists that also says no to every non-entailed
sentence.
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Problems with propositionalisation

Propositionalisation is inefficient; it generates irrelevant
sentences.

Example
The inference of Evil(John) from
∀𝑥.King(𝑥) ∧ Greedy(𝑥) → Evil(𝑥)

King(John)

∀𝑦.Greedy(𝑦)

Brother(Richard, John)

seems obvious, but propositionalisation produces irrelevant
facts such as Greedy(Richard).

For 𝑝 𝑘-ary predicates and 𝑛 constants, there are 𝑝 ⋅ 𝑛௞

instantiations.
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Unification
We can get the inference immediately if we can find a
substitution 𝜃 such that King(𝑥) and Greedy(𝑥) match
King(John) and Greedy(𝑦).

𝜃 = {𝑥/John, 𝑦/John} works.

Intuitively, the unification of two sentences means to find a
substitution such that the sentences become identical under
its application.

𝜃 ∈ Unify(𝛼, 𝛽) iff 𝛼𝜃 = 𝛽𝜃.

𝛼 𝛽 𝜃

Knows(John, 𝑥) Knows(John, Jane) {𝑥/Jane}

Knows(John, 𝑥) Knows(𝑦,OJ) {𝑥/OJ, 𝑦/John}

Knows(John, 𝑥) Knows(𝑦,Mother(𝑦)) {𝑦/John, 𝑥/Mother(John)}

Knows(John, 𝑥) Knows(𝑥,Richard) [fail]
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Term unification

An equation is a pair of terms (𝑡, 𝑡ᇱ) with 𝑡, 𝑡ᇱ ∈ 𝑇ி(𝑋).
We denote the equation (𝑡, 𝑡ᇱ) as 𝑡 ?= = 𝑡ᇱ.

A unification problem is a finite set of equations
𝑈 = {𝑡ଵ ?= = 𝑡ᇱଵ, … , 𝑡௡ ?= = 𝑡ᇱ௡}

A unifier (solution) for 𝑈 is a substitution 𝜃∶ 𝑋 → 𝑇ி(𝑌)

s.t. 𝜃(𝑡௜) = 𝜃(𝑡ᇱ௜), for 𝑖 = 1, … , 𝑛.
We denote by Unify(𝑈) the set of unifiers for 𝑈.

If 𝜃 = {𝑥ଵ/𝑡ଵ, … , 𝑥௡/𝑡௡} then
𝑈{𝑥ଵ/𝑡ଵ, … , 𝑥௡/𝑡௡} = {𝜃(𝑡) ?= = 𝜃(𝑡ᇱ) ∣ 𝑡 ?= = 𝑡ᇱ ∈ 𝑈}.
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Most general unifier
Example

To unify Knows(John, 𝑥) and Knows(𝑦, 𝑧),
𝜃 = {𝑦/John, 𝑥/𝑧} or 𝜃 = {𝑦/John, 𝑥/John, 𝑧/John}.
The first unifier is more general than the second.

A unifier 𝜃 ∈ Unify(𝑈) is more general than 𝛿 ∈ Unify(𝑈) if
there is a substitution 𝜏 s.t. 𝛿 = 𝜃 ; 𝜏.

A unifier 𝜃 ∈ Unify(𝑈) is a most general unifier (mgu) if for
any 𝛿 ∈ Unify(𝑈) there is a substitution 𝜏 s.t. 𝛿 = 𝜃 ; 𝜏.

There is a single most general unifier that is unique up to
renaming of variables.

Example
mgu({John ?= = 𝑦, 𝑥 ?= = 𝑧}) = {𝑦/John, 𝑥/𝑧}
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Example

What is the most general unifier of the following equations?

• Loves(John, 𝑥) ?= = Loves(𝑦,Mother(𝑦))

• Loves(John,Mother(𝑥)) ?= = Loves(𝑦, 𝑦)

16 / 26



Example ⋅ Solution

• Loves(John, 𝑥) ?= = Loves(𝑦,Mother(𝑦))

{𝑥/Mother(John), 𝑦/John}

• Loves(John,Mother(𝑥)) ?= = Loves(𝑦, 𝑦)

Fail
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Unification
Let 𝑅 = {𝑥ଵ ?= = 𝑡ଵ, … , 𝑥௡ ?= = 𝑡௡} be a unification problem with
variables from 𝑋, and 𝑌 the set of variables occurring in 𝑡௜.

We say that 𝑅 is solved if 𝑥௜ ≠ 𝑥௝ for 𝑖 ≠ 𝑗 and 𝑥௜ ∉ 𝑌.

Any solved problem 𝑅 defines a substitution 𝜃ோ
𝜃ோ = {𝑥ଵ/𝑡ଵ, … , 𝑥௡/𝑡௡}

𝜃ோ ∈ Unify(𝑅)

The following algorithm transforms a non-ground unification
problem 𝑈 into another non-ground unification problem 𝑅. If
𝑅 = ∅, then 𝑈 has no unifiers. Otherwise, 𝑅 is solved, and
the substitution 𝜃ோ determined by 𝑅 is an mgu for 𝑈.

What happens if 𝑈 is ground?
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Unification algorithm
Input: 𝑈 = {𝑡ଵ ?= = 𝑡ᇱଵ, … , 𝑡௡ ?= = 𝑡ᇱ௡} a non-ground unification problem
Initialise: 𝑅 = 𝑈

Execute non-deterministically the steps:
Delete: 𝑅 ∪ {𝑡 ?= = 𝑡} ⇒ 𝑅 if 𝑡 is ground
Switch: 𝑅 ∪ {𝑡 ?= = 𝑥} ⇒ 𝑅 ∪ {𝑥 ?= = 𝑡} if 𝑥 is a variable, and 𝑡 is not
Decomposition:
𝑅 ∪ {𝑓(𝑡ଵ, … , 𝑡௡) ?= = 𝑓(𝑡ᇱଵ, … , 𝑡ᇱ௡)} ⇒ 𝑅 ∪ {𝑡ଵ ?= = 𝑡ᇱଵ, … , 𝑡௡ ?= = 𝑡ᇱ௡}

Conflict: 𝑅 ∪ {𝑓(𝑡ଵ, … , 𝑡௡) ?= = 𝑔(𝑡ᇱଵ, … , 𝑡ᇱ௞)} ⇒ ∅ if 𝑓 ≠ 𝑔

Eliminate: 𝑅 ∪ {𝑥 ?= = 𝑡} ⇒ {𝑥 ?= = 𝑡} ∪ 𝑅{𝑥/𝑡} if 𝑥 is a variable that
occurs in 𝑅 but not in 𝑡, and 𝑡 is not a variable

Occurs check: 𝑅 ∪ {𝑥 ?= = 𝑡} ⇒ ∅ if 𝑥 is a variable that occurs in 𝑡

and 𝑡 ≠ 𝑥

Coalesce: 𝑅 ∪ {𝑥 ?= = 𝑦} ⇒ {𝑥 ?= = 𝑦} ∪ 𝑅{𝑥/𝑦} if 𝑥 and 𝑦 are variables
occurring in 𝑅

Output: if 𝑅 = ∅, then there are no solutions for problem 𝑈

if 𝑅 ≠ ∅, then 𝑅 is an mgu for 𝑈
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Example

𝑈 = 𝑅 = {Loves(John, 𝑥) ?= = Loves(𝑦,Mother(𝑦))}

⇓ Decompose

𝑅 = {John ?= = 𝑦, 𝑥 ?= = Mother(𝑦)}

⇓ Switch

𝑅 = {𝑦 ?= = John, 𝑥 ?= = Mother(𝑦)}

⇓ Eliminate

𝑅 = {𝑦 ?= = John, 𝑥 ?= = Mother(John)}
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Generalized Modus Ponens (GMP)

For the atomic sentences 𝑝ଵ, … , 𝑝௡, 𝑝
ᇱ
ଵ, … , 𝑝ᇱ௡, 𝑞, and

a unifier 𝜃 s.t. 𝑝ᇱ௜𝜃 = 𝑝௜𝜃 for all 𝑖, we have the inference rule:

𝑝ᇱଵ, 𝑝
ᇱ
ଶ, … , 𝑝ᇱ௡ (𝑝ଵ ∧ 𝑝ଶ ∧ … ∧ 𝑝௡ → 𝑞)

𝑞𝜃

GMP is used with KB of definite clauses (one positive literal).
All variables are assumed universally quantified.

Example
𝑝ᇱଵ is King(John) 𝑝ᇱଶ is Greedy(𝑦)

𝑝ଵ is King(𝑥) 𝑝ଶ is Greedy(𝑥) 𝑞 is Evil(𝑥)

𝜃 is (𝑥/John, 𝑦/John)

𝑞𝜃 is Evil(John)
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GMP ⋅ Soundness

We need to show that 𝑝ᇱଵ, … , 𝑝ᇱ௡, (𝑝ଵ ∧ … ∧ 𝑝௡ → 𝑞) ⊧ 𝑞𝜃,
provided that 𝑝ᇱ௜𝜃 = 𝑝௜𝜃, for all 𝑖 and 𝜃 a unifier.

Proof.
For any sentence 𝑝, we have that 𝑝 ⊧ 𝑝𝜃 by the Universal
Instantiation rule. Using this, we have:

1. (𝑝ଵ∧…∧𝑝௡ → 𝑞) ⊧ (𝑝ଵ∧…∧𝑝௡ → 𝑞)𝜃 = (𝑝ଵ𝜃∧…∧𝑝௡𝜃 → 𝑞𝜃)

2. 𝑝ᇱଵ, … , 𝑝ᇱ௡ ⊧ 𝑝ᇱଵ ∧ … ∧ 𝑝ᇱ௡ ⊧ (𝑝ᇱଵ ∧ … ∧ 𝑝ᇱ௡)𝜃 = 𝑝ᇱଵ𝜃 ∧ … ∧ 𝑝ᇱ௡𝜃

= 𝑝ଵ𝜃 ∧ … ∧ 𝑝௡𝜃

because by the definition of generalized modus ponens
we have that 𝑝ᇱ௜𝜃 = 𝑝௜𝜃, for all 𝑖.

3. From the previous two steps, and by applying modus
ponens, 𝑞𝜃 follows.
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Example ⋅ Winnie-the-Pooh
It is known in The Hundred-Acre Wood that if someone who
is very fond of food gives a treat to one of their friends, they
must be really generous.

Eeyore, the sad donkey, has some hunny that he has received
for his birthday from Winnie-the-Pooh, who, as we know, is
very fond of food.

Prove that Winnie-the-Pooh is generous.
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Example ⋅ Winnie-the-Pooh

It is an act of generosity for someone very fond of food to
share treats with his friends.
VeryFondOfFood(𝑥) ∧ Treat(𝑦) ∧ Friend(𝑧) ∧ Gives(𝑥, 𝑦, 𝑧) →

Generous(𝑥)

Eeyore has some hunny.
∃𝑥.Owns(Eeyore, 𝑥) ∧ Hunny(𝑥)

He must have received the hunny from Winnie-the-Pooh.
Hunny(𝑥) ∧ Owns(Eeyore, 𝑥) → Gives(Pooh, 𝑥, Eeyore)
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Example ⋅ Winnie-the-Pooh
Hunny is a treat.
Hunny(𝑥) → Treat(𝑥)

Residents of The Hundred-Acre Wood are friends.
Resident(𝑥,HundredAcreWood) → Friend(𝑥)

Eeyore is a resident of The Hundred-Acre Wood.
Resident(Eeyore,HundredAcreWood)

Pooh is very fond of food.
VeryFondOfFood(Pooh)
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Summary

• Rules for quantifiers
• Reducing FOL to PL
• Unification as equation solving
• Generalized modus ponens
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