
Informatics 2D ⋅ Agents and Reasoning ⋅ 2019/2020

Lecture 10 ⋅ First-Order Logic

Claudia Chirita

School of Informatics, University of Edinburgh

4th February 2020

Based on slides by: Jacques Fleuriot, Michael Rovatsos, Michael Herrmann, Vaishak Belle

Outline

• Why FOL?
• Syntax and semantics of FOL
• Using FOL
• Wumpus world in FOL

2 / 24

Propositional logic as a language
Compared to languages in Computer Science

• serves as a basis for declarative languages
• allows partial/disjunctive/negated information
⋅ unlike most data structures and databases

• is compositional
⋅ e.g. the meaning of 𝐵ଵ,ଵ ∧ 𝑃ଵ,ଶ is derived from that of

𝐵ଵ,ଵ and of 𝑃ଵ,ଶ
⋅ unlike some instances of concurrent programming

Compared to natural languages
• meaning is context-independent
⋅ unlike natural languages, where meaning depends on

context
• propositional logic has very limited expressive power
⋅ e.g. we can say pits cause breezes in adjacent squares

only by writing one sentence for each square
3 / 24

First-order logic

Propositional logic deals with atomic facts (i.e. atomic,
non-structured propositional symbols; usually finitely many).

FOL brings structure to facts, which can be built from:

Objects: people, houses, numbers, colours, football games
Functions: father of, best friend, one more than, plus
Relations: red, round, prime, brother of, bigger than, part of

4 / 24

Example ⋅ Of brothers and kings

5 / 24

Example ⋅ Of brothers and kings

Brother(KingJohn,RichardTheLionheart)

Length(LeftLegOf(Richard)) > Length(LeftLegOf(John))

6 / 24

Syntax ⋅ Signatures

A first-order signature is a pair (𝐹, 𝑃)
𝐹 – indexed family (𝐹௡)௡∈ℕ of sets of function symbols

(operations)
𝑃 – indexed family (𝑃௡)௡∈ℕ of sets of relation symbols

(predicates)

For 𝜎 ∈ 𝐹௡ and 𝜋 ∈ 𝑃௡, 𝑛 is called arity.

Constant symbols are function symbols with arity zero.

Example

functions 𝐹଴ = {Richard, John}, 𝐹ଵ = {LeftLegOf}

predicates 𝑃ଵ = {Crown,King, Person}

𝑃ଶ = {Brother,OnHead}

7 / 24

Syntax ⋅ Sentences
Terms Least set 𝑇ி such that 𝜎(𝑡ଵ, … , 𝑡௡) ∈ 𝑇ி

for every 𝜎 ∈ 𝐹௡ and 𝑡ଵ, … , 𝑡௡ ∈ 𝑇ி.
In particular, 𝑇ி contains all constants.

Variables Every set of (𝐹, 𝑃)-variables 𝑋 determines
an extended signature (𝐹 ∪ 𝑋, 𝑃) with the
variables in 𝑋 added to 𝐹଴ as new constants.

Sentences over a signature (𝐹, 𝑃) are defined by the grammar
𝜑 ∶∶= 𝜋(𝑡ଵ, … , 𝑡௡) ∣ 𝑡 = 𝑡ᇱ atoms

∣ ¬𝜑 ∣ 𝜑 ∧ 𝜑ᇱ ∣ 𝜑 ∨ 𝜑ᇱ ∣ 𝜑 → 𝜑ᇱ ∣ 𝜑 ↔ 𝜑ᇱ boolean connectives

∣ ∀𝑋.𝜑 ∣ ∃𝑋.𝜑 quantifiers

where 𝜋 ∈ 𝑃௡ is a predicate symbol, 𝑡, 𝑡ᇱ, 𝑡ଵ, … , 𝑡௡ are terms,
and 𝑋 is a set of variables.

Precedence: ∀𝑋, ∃𝑋, ¬, ∧, ∨, →,↔
8 / 24

Syntax ⋅ Sentences
Sentences over a signature (𝐹, 𝑃) are defined by the grammar
𝜑 ∶∶= 𝜋(𝑡ଵ, … , 𝑡௡) ∣ 𝑡 = 𝑡ᇱ atoms

∣ ¬𝜑 ∣ 𝜑 ∧ 𝜑ᇱ ∣ 𝜑 ∨ 𝜑ᇱ ∣ 𝜑 → 𝜑ᇱ ∣ 𝜑 ↔ 𝜑ᇱ boolean connectives

∣ ∀𝑋.𝜑 ∣ ∃𝑋.𝜑 quantifiers

where 𝜋 ∈ 𝑃௡ is a predicate symbol, 𝑡, 𝑡ᇱ, 𝑡ଵ, … , 𝑡௡ are terms,
and 𝑋 is a set of variables.
Precedence: ∀𝑋, ∃𝑋, ¬, ∧, ∨, →,↔

Example

Brother(John,Richard)

Brother(John,Richard) ∧ Brother(Richard, John)

¬Brother(LeftLegOf(Richard), John)

¬King(Richard) → King(John)

∀𝑥.King(𝑥) → Person(𝑥)
9 / 24

Semantics ⋅ Models

Given a signature (𝐹, 𝑃), a model 𝑀 consists of
• a non-empty set |𝑀|, called the carrier set (domain)

of 𝑀, whose elements are called objects
• a function 𝑀ఙ ∶ |𝑀|௡ → |𝑀| for each operation symbol
𝜎 ∈ 𝐹௡

• a subset 𝑀గ ⊆ |𝑀|௡ for each relation symbol 𝜋 ∈ 𝑃௡

Examples

10 / 24

Satisfaction relation

The satisfaction relation links the syntax and the semantics.
• We write 𝑀 ⊧ 𝜑 and read “𝑀 satisfies 𝜑”, for 𝑀 a model

and 𝜑 a sentence, both for the same signature (𝐹, 𝑃).
• To make (𝐹, 𝑃) explicit, we sometimes write 𝑀 ⊧(ி,௉) 𝜑.
• The satisfaction relation is defined according to the

structure of sentences (in the following slides), based on
the evaluation of terms in models.

Evaluation of terms
• 𝑀௧ denotes the interpretation of a term 𝑡 in a model 𝑀.
• 𝑀ఙ(௧భ,…,௧೙)

= 𝑀ఙ(𝑀௧భ
, … , 𝑀௧೙

)

e.g. 𝑀LeftLegOf(John) = 𝑀LeftLegOf(𝑀John)

= 𝑀LeftLegOf() =

11 / 24

Satisfaction relation ⋅ 𝑀 ⊧ 𝜑

Atoms
• 𝑀 ⊧ 𝑡 = 𝑡ᇱ iff 𝑀௧ = 𝑀௧ᇲ

• 𝑀 ⊧ 𝜋(𝑡ଵ, … , 𝑡௡) iff (𝑀௧భ
, … , 𝑀௧೙

) ∈ 𝑀గ

Boolean connectives
• 𝑀 ⊧ ¬𝜑 iff 𝑀 ⊭ 𝜑

• 𝑀 ⊧ 𝜑ଵ ∧ 𝜑ଶ iff 𝑀 ⊧ 𝜑ଵ and 𝑀 ⊧ 𝜑ଶ

• 𝑀 ⊧ 𝜑ଵ ∨ 𝜑ଶ iff 𝑀 ⊧ 𝜑ଵ or 𝑀 ⊧ 𝜑ଶ

• 𝑀 ⊧ 𝜑ଵ → 𝜑ଶ iff 𝑀 ⊧ 𝜑ଶ whenever 𝑀 ⊧ 𝜑ଵ

• 𝑀 ⊧ 𝜑ଵ ↔ 𝜑ଶ iff 𝑀 ⊧ 𝜑ଵ → 𝜑ଶ and 𝑀 ⊧ 𝜑ଶ → 𝜑ଵ

12 / 24

Satisfaction relation ⋅ 𝑀 ⊧ 𝜑

Quantifiers

A model 𝑀ᇱ for (𝐹 ∪ 𝑋, 𝑃) is called an expansion of a model
𝑀 for (𝐹, 𝑃) if it interprets all symbols in 𝐹 and in 𝑃 the same
as 𝑀. Expansions formalize assignments of elements from 𝑀

to the variables in 𝑋.

Example

𝑀 𝑀′

13 / 24

Satisfaction relation ⋅ 𝑀 ⊧ 𝜑

Quantifiers

A model 𝑀ᇱ for (𝐹 ∪ 𝑋, 𝑃) is called an expansion of a model
𝑀 for (𝐹, 𝑃) if it interprets all symbols in 𝐹 and in 𝑃 the same
as 𝑀. Expansions formalize assignments of elements from 𝑀

to the variables in 𝑋.

• 𝑀 ⊧(ி,௉) ∀𝑋.𝜑 iff 𝑀ᇱ ⊧(ி∪௑,௉) 𝜑

for all expansions 𝑀ᇱ along the inclusion (𝐹, 𝑃) ⊆ (𝐹 ∪ 𝑋, 𝑃)

• 𝑀 ⊧(ி,௉) ∃𝑋.𝜑 iff there exists an expansion 𝑀ᇱ along the
inclusion (𝐹, 𝑃) ⊆ (𝐹 ∪ 𝑋, 𝑃) such that 𝑀ᇱ ⊧(ி∪௑,௉) 𝜑

14 / 24

Satisfaction relation ⋅ Example

True or False?

Brother(John,Richard) ∧ Brother(Richard, John)

¬Brother(LeftLegOf(Richard), John)

¬King(Richard) → King(John)

15 / 24

Satisfaction relation ⋅ Example

True or False?

∀𝑥.King(𝑥) → Person(𝑥)

𝑥 ↦ 𝑂ଵ (i.e. 𝑀ᇱ
௫ = 𝑂ଵ) 𝑂ଵ (John) is a king → 𝑂ଵ is a person.

𝑥 ↦ 𝑂ଶ 𝑂ଶ (Richard) is a king → 𝑂ଶ is a person.
𝑥 ↦ 𝑂ଷ 𝑂ଷ (John’s left leg) is a king → 𝑂ଷ is a person.
𝑥 ↦ 𝑂ସ 𝑂ସ (Richard’s left leg) is a king → 𝑂ସ is a person.
𝑥 ↦ 𝑂ହ 𝑂ହ (crown) is a king → 𝑂ହ is a person.

16 / 24

Expressivity ⋅ Quantifiers

∀𝑥.King(𝑥) → Person(𝑥)

∀𝑥.King(𝑥) ∧ Person(𝑥)

17 / 24

Expressivity ⋅ Quantifiers

∀𝑥.King(𝑥) → Person(𝑥)

∀𝑥.King(𝑥) ∧ Person(𝑥)

17 / 24

Expressivity ⋅ Quantifiers

∀𝑥.King(𝑥) → Person(𝑥)

∀𝑥.King(𝑥) ∧ Person(𝑥)

17 / 24

Expressivity ⋅ Quantifiers

∀𝑥.King(𝑥) → Person(𝑥)

∀𝑥.King(𝑥) ∧ Person(𝑥)

17 / 24

Expressivity ⋅ Quantifiers

∃𝑥.Crown(𝑥) ∧ OnHead(𝑥, John)

∃𝑥.Crown(𝑥) → OnHead(𝑥, John)

18 / 24

Expressivity ⋅ Quantifiers

∃𝑥.Crown(𝑥) ∧ OnHead(𝑥, John)

∃𝑥.Crown(𝑥) → OnHead(𝑥, John)

18 / 24

Expressivity ⋅ Quantifiers

∃𝑥.Crown(𝑥) ∧ OnHead(𝑥, John)

∃𝑥.Crown(𝑥) → OnHead(𝑥, John)

18 / 24

Expressivity ⋅ Quantifiers

∃𝑥.Crown(𝑥) ∧ OnHead(𝑥, John)

∃𝑥.Crown(𝑥) → OnHead(𝑥, John)

18 / 24

Expressivity ⋅ Quantifiers
The order of quantifiers

∃𝑋.∀𝑌.𝜑 is not the same thing as ∀𝑌.∃𝑋.𝜑
∃𝑥.∀𝑦.Loves(𝑥, 𝑦)

There is a person who loves everyone in the world.
∀𝑦.∃𝑥.Loves(𝑥, 𝑦)

Everyone in the world is loved by someone.

Duality

𝜑 ∧ 𝜑ᇱ ≡ ¬(¬𝜑 ∨ ¬𝜑ᇱ) and 𝜑 ∨ 𝜑ᇱ ≡ ¬(¬𝜑 ∧ ¬𝜑ᇱ)

∀𝑋.𝜑 ≡ ¬∃𝑋.¬𝜑

∀𝑥.Likes(𝑥, IceCream) ≡ ¬∃𝑥.¬Likes(𝑥, IceCream)

∃𝑋.𝜑 ≡ ¬∀𝑋.¬𝜑

∃𝑥.Likes(𝑥,Broccoli) ≡ ¬∀𝑥.¬Likes(𝑥,Broccoli)

19 / 24

Using FOL ⋅ Kinship domain

Axioms: definitions, theorems

One’s mother is one’s female parent.
∀𝑚, 𝑐.𝑚 = Mother(𝑐) ↔ (Female(𝑚) ∧ Parent(𝑚, 𝑐))

Parent and child are inverse relations.
∀𝑝, 𝑐.Parent(𝑝, 𝑐) ↔ Child(𝑐, 𝑝)

A sibling is another child of one’s parents.
∀𝑥, 𝑦.Sibling(𝑥, 𝑦) ↔ 𝑥 ≠ 𝑦 ∧ ∃𝑝.Parent(𝑝, 𝑥) ∧ Parent(𝑝, 𝑦)

Brothers are siblings.
∀𝑥, 𝑦.Brother(𝑥, 𝑦) → Sibling(𝑥, 𝑦)

The sibling relation is symmetric.
∀𝑥, 𝑦.Sibling(𝑥, 𝑦) ↔ Sibling(𝑦, 𝑥)

20 / 24

Interacting with FOL KBs

Tell/Ask interface

Assertions

Tell(KB,King(John))
Tell(KB, Person(Richard))
Tell(KB, ∀𝑥.King(𝑥) → Person(𝑥))

Queries (goals)

Ask(KB, Person(John)) true
Ask(KB, ∃𝑥.Person(𝑥)) true
Ask(KB, Person(𝑥)) {𝑥/John}, {𝑥/Richard}

Idea
Ask(KB, 𝜑) returns all substitutions 𝜃 such that KB ⊧ 𝜃(𝜑).

21 / 24

Example ⋅ Wumpus world

Suppose a wumpus-world agent is using an FOL KB and
perceives a smell and a breeze (but no glitter) at 𝑡 = 5.

Tell(KB, Percept([Smell,Breeze,None], 5))

Does the KB entail some best action at 𝑡 = 5?
Ask(KB, ∃𝑎.BestAction(𝑎, 5))
Answer: true, {𝑎/Shoot}

Perception
∀𝑡, 𝑠, 𝑏.Percept([𝑠, 𝑏,Glitter], 𝑡) → Glitter(𝑡)

Reflex
∀𝑡.Glitter(𝑡) → BestAction(Grab, 𝑡)

22 / 24

Example ⋅ Wumpus world

The environment
∀𝑥, 𝑦, 𝑎, 𝑏.Adjacent([𝑥, 𝑦]) ↔ [𝑎, 𝑏]∈{[𝑥+1, 𝑦], [𝑥−1, 𝑦],

[𝑥, 𝑦+1], [𝑥, 𝑦−1]}

∀𝑠, 𝑡.At(Agent, 𝑠, 𝑡) ∧ Breeze(𝑡) → Breezy(𝑠)

Squares are breezy near a pit.

Diagnostic rule: infer cause from effect
∀𝑠.Breezy(𝑠) → ∃𝑟.Adjacent(𝑟, 𝑠) ∧ Pit(𝑟)

Causal rule: infer effect from cause
∀𝑟.Pit(𝑟) → (∀𝑠.Adjacent(𝑟, 𝑠) → Breezy(𝑠))

23 / 24

Summary

First-order logic:
• Objects and relations are semantic primitives.
• Syntax: constants, functions, predicates, quantifiers.
• Increased expressive power – sufficient to define the

Wumpus world.

24 / 24

