Informatics 2D - Agents and Reasoning - 2019/2020

Lecture 8 - Smart Searching
Using Constraints

Claudia Chirita

School of Informatics, University of Edinburgh

@ THE UNIVERSITY of EDINBURGH

&- informatics

30" January 2020

Based on slides by: Jacques Fleuriot, Michael Rovatsos, Michael Herrmann, Vaishak Belle

Outline

* Constraint Satisfaction Problems (CSP)
 Backtracking search for CSP
* Efficiency matters

/33

Constraint Satisfaction Problems (CSP)

Standard search problem

e A state is a black box — any data structure that supports
a successor function, a heuristic function and a goal test.

CSP

* A state is defined by a set of variables, each of which
has a value.

* Solution: when each variable has a value that satisfies
all its constraints.

* Allows useful general-purpose algorithms with more
power than standard search algorithms.

* Main idea: eliminate large portions of the search space
by identifying variable/value combinations that violate
the constraints.

/33

Constraint Satisfaction Problems (CSP)

A CSP consists of:
* aset X ={X,,..,X,,} of variables

* aset D ={Dy,..,D,} of domains; each domain D; is a
set of possible values for variable X;

* a set C of constraints that specify accepted
combinations of values.

A constraint ¢ € C consists of a scope — tuple of
variables involved in the constraint — and a relation that
defines the values that the variables can take.

Example - Map-Colouring

NORTHERN
TERRITORY
WESTERN
AUSTRALIA
SOUTH |

AUSTRALIA

‘ TASMANIA

Variables: {WA, NT, Q,NSW, V, SA, T}
Domains: D; = {red, black, blue}

Constraints: adjacent regions must have different colours
-e.g. WA#NT or
- (WA,NT) € {(red, black), (red, blue), (black, red),
(black, blue), (blue, red), (blue, black)}

5/33

Example - Map-Colouring

NORTHERN
TERRITORY
WESTERN
AUSTRALIA

SOUTH
AUSTRALIA

‘ TASMANIA

Solutions are complete and consistent assignments.

- e.g. WA » red, NT » black, Q » red, NSW - black, V - red,
SA » blue, T » black.

6/33

Constraint graph
Binary CSP

* Each constraint relates two variables.

* Constraint graph:
- nodes are variables
- arcs (edges) represent constraints

—@
@‘@'é“@
®

/33

Varieties of CSP

Discrete variables

* finite domains:
- n variables, domain size d, 0(d™) complete assignments
- e.g. Boolean CSPs, including Boolean satisfiability
(NP-complete)
* infinite domains:
- integers, strings, etc.
- e.g. job scheduling
— variables are start/end days for each job

— we need a constraint language to express
Startjob, + 5 < Startjob,

Continuous variables
* e.g. start/end times for Hubble Space Telescope observations

* linear constraints solvable in polynomial time by linear
programming

/33

Varieties of constraints

Unary constraints involve a single variable.
* e.g. SA # black

Binary constraints involve pairs of variables.
* eg SA#WA

Higher-order constraints involve 3 or more variables.

* e.g. crypt-arithmetic column constraints

Global constraints involve an arbitrary number of variables.

Example - Crypt-arithmetic

constraint
hypergraph
TWO
+ TWO
OUR
hypernode
(n-ary constraint)
Variables: {F,T,U,W,R,0,X1,X,, X3}
Domains: {0,1,2,3,4,5,6,7,8,9}

Constraints: Alldiff(F,T,U,W,R, 0) « global constraint
0+0=R+10-X;
Xi+W+W=U+10-X,
Xo+T+T=0+10-X;3
Xs=F, T+#0, F#0

10/

33

Real-world CSP

Assignment problems

* e.g. who teaches what class

Timetabling problems
* e.g. which class is offered when and where

Transportation scheduling

Factory scheduling

Many real-world problems involve real-valued variables.

11/33

Standard search formulation (incremental)

Let's start with the straightforward approach, then adapt it.

* States are defined by the values assigned so far.

Initial state: the empty assignment {}
Successor function: assign a value to an unassigned variable
that does not conflict with the current assignment
— fail if no legal assignments
Goal test: the current assignment is complete

* This is the same for all CSPs.

* For CSPs with with n variables, any solution appears at
depth n = use depth-first search.

12/33

Backtracking search

Variable assignments are commutative.
- e.g. [WA » red then NT - black]
is the same as
[NT + black then WA & red]

We only need to consider assignments to a single variable at
each node. Thus, b = d, and there are d™ leaves.

Depth-first search for CSPs with single-variable assignments
is called backtracking search.

Backtracking search: the basic uninformed algorithm for CSP.

Can solve the n-queens problem for n ~ 25.

13/33

Backtracking search

function BACKTRACKING-SEARCH(csp) returns a solution, or failure
return BACKTRACK({ }, csp)

function BACKTRACK (assignment, csp) returns a solution, or failure
if assignment is complete then return assignment
var <— SELECT-UNASSIGNED- VARIABLE(csp)
for each value in ORDER-DOMAIN-VALUES(var, assignment, csp) do
if value is consistent with assignment then
add {var = value} to assignment Optional; can be used to
inferences «— INFERENCE(csp, var, value) <+—— impose arc-consistency
if inferences # failure then (more on this later)
add inferences to assignment
result < BACKTRACK(assignment, csp)
if result # failure then
return result
remove {var = value} and inferences from assignment
return failure

14 /33

Backtracking example

15/ 33

Backtracking example

4% 4N

af —all
v @

/‘!.

16 / 33

Backtracking example

ar
\.‘
b 40
g
CaE
/t!.\‘
iw/
T &
)

17 /33

Backtracking example

ar
\‘
| /B | /B
-3
CaE
*c
r
>
L
ar
°

18 / 33

Improving backtracking efficiency

General-purpose methods can give huge gains in speed.

Which variable should be assigned next?
* SELECT-UNASSIGNED-VARIABLE

Then, in what order should its values be tried?
* ORDER-DOMAIN-VALUES

What inferences should be performed at each search step?
* INFERENCE

Can we detect inevitable failure early?

19/ 33

Most constrained variable

var « SELECT-UNASSIGNED-VARIABLE(csp)

Most constrained variable heuristic
- choose the variable with the fewest legal values
- a.k.a. minimum-remaining-values (MRV) heuristic

OISR TR

20 /33

Most constraining variable

Tie-breaker among most constrained variables.

Most constraining variable heuristic
- choose the variable with the most constraints on
remaining variables, thus reducing branching
- a.k.a. degree heuristic

PN TR TR T

21/ 33

Least constraining value

ORDER-DOMAIN-VALUES

Given a variable, choose the least constraining value
- the one that rules out the fewest values in the remaining

variables
‘g$ 1 value for SA
o55 - o%% ey
- : : ‘g‘ 0 values for SA
4

Combining these heuristics: n-queens feasible for n ~ 1000.

22 /33

Inference - Forward checking

Idea
Keep track of remaining legal values for unassigned variables.

Terminate the search when a variable has no more legal

values.

WA NT Q NSW v SA T
EEE NEN EEN FEN FEN EEN EENm

23 /33

Inference - Forward checking

Idea
Keep track of remaining legal values for unassigned variables.

Terminate the search when a variable has no more legal

values.

& &
o o8
WA NT Q NSW Vv SA T

24 /33

Inference - Forward checking

Idea

Keep track of remaining legal values for unassigned variables.
Terminate the search when a variable has no more legal
values.

o585 - o588 - o%}
WA NT Q NSW \' SA T

25 /33

Inference - Forward checking

Idea

Keep track of remaining legal values for unassigned variables.
Terminate the search when a variable has no more legal

values.

055 955 gmh gm

WA

NT

Q

NSW

\'

SA

T

26 / 33

Constraint propagation

Forward checking propagates information from assigned to
unassigned variables, but doesn't provide early detection for
all failures.

PONEPUpO
WA NT Q NSW \' SA T

NT and SA cannot both be bluel

Constraint propagation repeatedly enforces constraints locally.

27 /33

Arc consistency

Simplest form of propagation makes each arc consistent.

X - Y is consistent iff
for every value x in the domain of X
there is some allowed value y in the domain of Y

PETNRP TR
WA NT Q NSW Vv SA T

L H BN N N EEm H EEE
t |

28 /33

Arc consistency

Simplest form of propagation makes each arc consistent.

X - Y is consistent iff
for every value x in the domain of X
there is some allowed value y in the domain of Y

PETNRP TR
WA NT Q NSW Vv SA T

[] H B N X EEm H EEm
I }

29 /33

Arc consistency

Simplest form of propagation makes each arc consistent.

X - Y is consistent iff
for every value x in the domain of X
there is some allowed value y in the domain of Y

o585 - o5 -4
WA NT Q NSW \' SA T

L H B X XEEm H EEE

t |

If X loses a value, its neighbours need to be rechecked.

30 /33

Arc consistency

Simplest form of propagation makes each arc consistent.

X - Y is consistent iff
for every value x in the domain of X
there is some allowed value y in the domain of Y

o58 - o5% - oRb
WA NT Q NSW \' SA T

[H B X XEm X mEm
t |

If X loses a value, its neighbours need to be rechecked.
Detects failure earlier than forward checking.
Can be run as a preprocessor or after each assignment.

31/33

Arc consistency algorithm - AC-3

function AC-3(¢sp) returns false if an inconsistency is found and true otherwise
inputs: csp, a binary CSP with components (X, D, C)
local variables: queue, a queue of arcs, initially all the arcs in csp

while queue is not empty do
(Xs, X;) — REMOVE-FIRST(queue)

if REVISE(csp, X;, X;) then Make X; i with respect to X ;
if size of D; = 0 then return false <«————— No consistent value left for X; so fail
for each X}, in X, NEIGHBORS - {X} do . B .
add (Xg, X;)to queue Since revision occurred, add all neighbours

of X; for consideration (or reconsideration)
return true

function REVISE(csp, X;, X)) returns true iff we revise the domain of X;
revised — false
for each z in D; do
if no value y in D; allows (z,y) to satisfy the constraint between X; and X; then
delete z from D;
revised «— true
return revised

d — maximum size of the domains
¢ — number of binary constraints

Time complexity: 0(cd®) Space complexity: 0(c)

32/33

Summary

In CSPs:

States defined by values of a fixed set of variables.
Goal test defined by constraints on variable values.

Backtracking: depth-first search with one variable
assigned per node.

Variable-ordering and value-selection heuristics help.

Forward checking prevents assignments that are certain
to lead to later failure.

Constraint propagation does additional work to limit
values and detect inconsistencies.

33/

33

