
Inf2D 05: Informed Search and
Exploration for Agents

Valerio Restocchi

School of Informatics, University of Edinburgh

23/01/20

Slide Credits: Jacques Fleuriot, Michael Rovatsos, Michael Herrmann, Vaishak Belle



Outline

− Best-first search

− Greedy best-first search

− A∗ search

− Heuristics

− Admissibility

2



Review: Tree search

A search strategy is defined by picking the order of node
expansion from the frontier

3



Best-first search

− An instance of general TREE-SEARCH or
GRAPH-SEARCH

− Idea: use an evaluation function f (n) for each node n

I estimate of “desirability”
Ü Expand most desirable unexpanded node, usually the
node with the lowest evaluation

− Implementation:
Order the nodes in frontier in decreasing order of
desirability

− Special cases:

I Greedy best-first search
I A∗search

4



Romania with step costs in km

5



Greedy best-first search

− Evaluation function f (n) = h(n) (heuristic)

− h(n): estimated cost of cheapest path from state at node
n to a goal state

I e.g., hSLD(n): straight-line distance from n to goal
(Bucharest)

I Greedy best-first search expands the node that appears
to be closest to goal

6



Added slide: Heuristic
What is a heuristic?

− From the greek word “heuriskein” meaning “to discover”
or “to find”

− A heuristic is any method that is believed or practically
proven to be useful for the solution of a given problem,
although there is no guarantee that it will always work or
lead to an optimal solution.

− Here we will use heuristics to guide tree search. This may
not change the worst case complexity of the algorithm,
but can help in the average case.

− We will introduce conditions (admissibility, consistency,
see below) in order to identify good heuristics, i.e. those
which actually lead to an improvement over uninformed
search.

− See also: https://en.wikipedia.org/wiki/Heuristic
7



Greedy best-first search example

8



Greedy best-first search example

9



Greedy best-first search example

10



Greedy best-first search example

11



Properties of greedy best-first search

− Complete? No – can get stuck in loops

I Graph search version is complete in finite space, but not
in infinite ones

− Time? O(bm) for tree version, but a good heuristic can
give dramatic improvement

− Space? O(bm) – keeps all nodes in memory

− Optimal? No

12



A∗ search

− Idea: avoid expanding paths that are already expensive

− Evaluation function f (n) = g(n) + h(n)

I g(n): cost so far to reach n
I h(n): estimated cost from n to goal
I f (n): estimated total cost of path through n to goal

− A∗ is both complete and optimal if h(n) satisfies certain
conditions

13



A∗ search example

14



A∗ search example

15



A∗ search example

16



A∗ search example

17



A∗ search example

18



A∗ search example

19



Admissible heuristics

− A heuristic h(n) is admissible if for every node n,
h(n) ≤ h∗(n), where h∗(n) is the true cost to reach the
goal state from n.

− An admissible heuristic never overestimates the cost to
reach the goal, i.e., it is optimistic

I Thus, f (n) = g(n) + h(n) never overestimates the true
cost of a solution

− Example: hSLD(n) (never overestimates the actual road
distance)

− Theorem: If h(n) is admissible, A∗ using TREE-SEARCH
is optimal.

20



Optimality of A∗ (proof)
− Suppose some suboptimal goal G2 has been generated

and is in the frontier. Let n be an unexpanded node in
the frontier such that n is on a shortest path to an
optimal goal G .

− f (G2) = g(G2) since h(G2) = 0

− f (G ) = g(G ) since h(G ) = 0

− g(G2) > g(G ) since G2 is suboptimal

− f (G2) > f (G ) from above

21



Optimality of A∗ (proof cntd.)
− Suppose some suboptimal goal G2 has been generated

and is in the frontier. Let n be an unexpanded node in
the frontier such that n is on a shortest path to an
optimal goal G .

− f (G ) < f (G2) from above (G2 is suboptimal)

− h(n) ≤ h∗(n) since h is admissible

− g(n) + h (n) ≤ g (n) + h∗ (n) = f (G )

− f (n) ≤ f (G )

Hence f (n) < f (G2) ⇒ A∗ will never select G2 for expansion.

22



Consistent heuristics
− A heuristic is consistent if for every node n, every

successor n′ of n generated by any action a,

h(n) ≤ c(n, a, n′) + h(n′)

− If h is consistent, we have

f (n′) = g(n′) + h(n′)

= g(n) + c(n, a, n′) + h(n′)

≥ g(n) + h(n)

≥ f (n)

− i.e., f (n) is non-decreasing
along any path.

Theorem:
If h(n) is consistent, A∗ using GRAPH-SEARCH is optimal.

23



Optimality of A∗

− A∗ expands nodes in order of increasing f value

− Gradually adds “f -contours” of nodes

− Contour i has all nodes with f = fi , where fi < fi+1

24



Properties of A∗

− Complete? Yes (unless there are infinitely many nodes
with f ≤ f (G ))

− Time? Exponential

− Space? Keeps all nodes in memory

− Optimal? Yes

25



Admissible heuristics

Example:

− for the 8-puzzle:

I h1(n): number of misplaced tiles
I h2(n): total Manhattan distance

(i.e., no. of squares from desired location of each tile)

Exercise: Calculate
these two values:

− h1 (S) = ?

− h2 (S) = ?

26



Dominance

− If h2(n) ≥ h1(n) for all n (both admissible) then

I h2 dominates h1
I h2 is better for search

− Typical search costs (average number of nodes expanded):

I d = 12 IDS = 3,644,035 nodes
A∗(h1) = 227 nodes
A∗(h2) = 73 nodes

I d = 24 IDS = too many nodes
A∗(h1) = 39,135 nodes
A∗(h2) = 1,641 nodes

27



Relaxed problems

− A problem with fewer restrictions on the actions is called
a relaxed problem

− The cost of an optimal solution to a relaxed problem is an
admissible heuristic for the original problem

− If the rules of the 8-puzzle are relaxed so that a tile can
move anywhere,

I then h1(n) gives the shortest solution

− If the rules are relaxed so that a tile can move to any
adjacent square,

I then h2(n) gives the shortest solution

− Can use relaxation to automatically generate admissible
heuristics

28



Summary

Smart search based on heuristic scores.

− Best-first search

− Greedy best-first search

− A∗ search

− Admissible heuristics and optimality.

29


