Inf2D 05: Informed Search and
Exploration for Agents

Valerio Restocchi

School of Informatics, University of Edinburgh

23/01/20

informatics

Slide Credits: Jacques Fleuriot, Michael Rovatsos, Michael Herrmann, Vaishak Belle

Outline

Best-first search

— Greedy best-first search
— A* search

— Heuristics

— Admissibility

Review: Tree search

function TREE-SEARCH(problem) returns a solution, or failure
initialize the frontier using the initial state of problem
loop do
if the frontier is empty then return failure
choose a leaf node and remove it from the frontier
if the node contains a goal state then return the corresponding solution
expand the chosen node, adding the resulting nodes to the frontier

A search strategy is defined by picking the order of node
expansion from the frontier

Best-first search

An instance of general TREE-SEARCH or
GRAPH-SEARCH

— ldea: use an evaluation function f(n) for each node n
P estimate of “desirability”

=» Expand most desirable unexpanded node, usually the
node with the lowest evaluation

— Implementation:
Order the nodes in frontier in decreasing order of
desirability

— Special cases:

» Greedy best-first search
> A*search

Romania with step

costs in km

Straight-line distance

© Buchamwst
Arad
Bucharest
Craiova
Dobreta
Eforie
Fagaras
Giurgiu

66

0
160
242
161
176

151
226

241
234

1o
193
253
329

1%
74

Greedy best-first search

— Evaluation function f(n) = h(n) (heuristic)

— h(n): estimated cost of cheapest path from state at node
n to a goal state

» e.g., hg p(n): straight-line distance from n to goal
(Bucharest)

» Greedy best-first search expands the node that appears
to be closest to goal

Added slide: Heuristic

What is a heuristic?

From the greek word “heuriskein” meaning “to discover’
or “to find"

A heuristic is any method that is believed or practically
proven to be useful for the solution of a given problem,
although there is no guarantee that it will always work or
lead to an optimal solution.

Here we will use heuristics to guide tree search. This may
not change the worst case complexity of the algorithm,
but can help in the average case.

We will introduce conditions (admissibility, consistency,
see below) in order to identify good heuristics, i.e. those
which actually lead to an improvement over uninformed
search.

See also: https://en.wikipedia.org/wiki/Heuristic

Greedy best-first search example

366

Greedy best-first search example

Q>

}‘ ﬂ!bi ‘Q'lmisuala i _.ﬁ 7 E.

253 kr.] 4

Greedy best-first search example

>

kr] I+

%6 176

380 193

10

Greedy best-first search example

Q>

CSE") . .Q .I misoala,

KF]

.ﬂ. ..qu ..Ouadsa ...rnnwmea
%6 VA 380

193

253 0

4

11

Properties of greedy best-first search

— Complete? No — can get stuck in loops

» Graph search version is complete in finite space, but not
in infinite ones

— Time? O(b™) for tree version, but a good heuristic can
give dramatic improvement

— Space? O(b™) — keeps all nodes in memory

— Optimal? No

12

A* search

— lIdea: avoid expanding paths that are already expensive
— Evaluation function f(n) = g(n) + h(n)

» g(n): cost so far to reach n
» h(n): estimated cost from n to goal
» f(n): estimated total cost of path through n to goal

— A* is both complete and optimal if h(n) satisfies certain
conditions

13

A* search example

)

366=0+366

14

A* search example

393=140+253

#47=118+329

449=754374

15

A* search example

S

=D

imisoara,

447=118+329

D> @D

646=200+366 415=239+176 671=2914380 413=220+193

16

A* search example

Chad>

<‘si'>

H7=118+329

646=2804366 415=239+176 6f1 2911»380

.@' ..P'ii;n' .@

526=366+160 417=317+100 553=300+253

17

A* search example

646=280+366

67 1-&1-&380

imisoara

H47=118+329

501=3384253 450=450+0

526=366+160 417-31 7+100 553=300+253

18

A* search example

>

imisoara

H7=118+329
@ -
646=280+4366 N 671= 291+380 .
5G1..’!38+253 450-4504-0 526-366+160 553.acn<253

418=41840 6154554160 607=414+193

Admissible heuristics

— A heuristic h(n) is admissible if for every node n,
h(n) < h*(n), where h*(n) is the true cost to reach the
goal state from n.

— An admissible heuristic never overestimates the cost to
reach the goal, i.e., it is optimistic

» Thus, f(n) = g(n) + h(n) never overestimates the true
cost of a solution

— Example: hg| p(n) (never overestimates the actual road
distance)

— Theorem: If h(n) is admissible, A* using TREE-SEARCH
is optimal.

20

Optimality of A* (proof)

— Suppose some suboptimal goal G, has been generated
and is in the frontier. Let n be an unexpanded node in
the frontier such that n is on a shortest path to an
optimal goal G.

Start

Gy) = g(Gy) since h(Gp) =0
G) =g(G) since h(G) =0
G) > g(G) since G, is suboptimal
Gy) > f(G) from above

Optimality of A* (proof cntd.)

— Suppose some suboptimal goal G, has been generated
and is in the frontier. Let n be an unexpanded node in
the frontier such that n is on a shortest path to an
optimal goal G.

Start

I NS

@ G,
— f(G) < f(Gy) from above (G, is suboptimal)
— h(n) < h*(n) since h is admissible
— g(n)+h(n) < g(n)+h(n)=rf(G)
— f(n) < f(

G,) = A* will never select G, for expansion.

Consistent heuristics

— A heuristic is consistent if for every node n, every
successor n’ of n generated by any action a,

h(n) < ¢(n,a,n’) + h(n")

— If his consistent, we have
f(n') = g(n')+ h(n)
= g(n)+c(n,a,n)+h(n) c(nan
g(n) + h(n)
f(n)
— i.e., f(n) is non-decreasing
along any path.

(AVARAVS

Theorem:

If h(n) is consistent, A* using GRAPH-SEARCH is optimal.
23

Optimality of A*
— A* expands nodes in order of increasing f value

— Gradually adds “f-contours” of nodes

— Contour i has all nodes with f = f;, where f; < fi;

24

Properties of A"

— Complete? Yes (unless there are infinitely many nodes
with £ < f(G))

— Time? Exponential

— Space? Keeps all nodes in memory

— Optimal? Yes

25

Admissible heuristics

Example:
— for the 8-puzzle:

» hi(n): number of misplaced tiles
» hy(n): total Manhattan distance

(i.e., no. of squares from desired location of each tile)

Exercise: Calculate 2l 4 E |Z|
these t lues:
isehlvx(/c;)va u?es E IEI B IZ‘ E
— h(S) =7 E EI

26

Dominance

— If ha(n) > hy(n) for all n (both admissible) then

» h, dominates hy
» hy is better for search

— Typical search costs (average number of nodes expanded):

> d=12 IDS = 3,644,035 nodes
A*(h1) = 227 nodes
A*(h2) = 73 nodes

> d=24 IDS = too many nodes
A*(h1) = 39,135 nodes
A*(hp) = 1,641 nodes

27

Relaxed problems

A problem with fewer restrictions on the actions is called
a relaxed problem

The cost of an optimal solution to a relaxed problem is an
admissible heuristic for the original problem

If the rules of the 8-puzzle are relaxed so that a tile can
move anywhere,

» then hi(n) gives the shortest solution

If the rules are relaxed so that a tile can move to any
adjacent square,

» then hy(n) gives the shortest solution

Can use relaxation to automatically generate admissible
heuristics

28

Summary

Smart search based on heuristic scores.
— Best-first search
— Greedy best-first search
— A* search

— Admissible heuristics and optimality.

29

