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Outline

− Games

− Optimal decisions

− α-β pruning

− Imperfect, real-time decisions
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Games vs. search problems

− We are (usually) interested in zero-sum games of perfect
information

I Deterministic, fully observable
I Agents act alternately
I Utilities at end of game are equal and opposite

− “Unpredictable” opponent Ü specifying a move for every
possible opponent reply

− Time limits Ü unlikely to find goal, must approximate
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Game tree (2-player, deterministic, turns)

− 2 players: MAX and MIN

− MAX moves first

− Tree built from MAX’s POV

←− Utility of each terminal state
from MAX’s point of view.
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Optimal Decisions
− Normal search: optimal decision is a sequence of actions

leading to a goal state (i.e. a winning terminal state)

− Adversarial search:

I MIN has a say in game
I MAX needs to find a contingent strategy which specifies:

I MAX’s move in initial state then ...
I MAX’s moves in states resulting from every response by

MIN to the move then ...
I MAX’s moves in states resulting from every response by

MIN to all those moves, etc. ...

minimax value of a node=utility for MAX of being in corresponding state:
MINIMAX (s) =
UTILITY (s) if TERMINAL-TEST (s)

maxa∈Actions(s)MINIMAX (RESULT (s, a)) if PLAYER(s) = MAX

mina∈Actions(s)MINIMAX (RESULT (s, a)) if PLAYER(s) = MIN
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Minimax
− Perfect play for deterministic games

− Idea: choose move to position with highest minimax value
= best achievable payoff against best play

− Example: 2-ply game:

6



Minimax algorithm

Idea: Proceed all the way down to the leaves of the tree then
minimax values are backed up through tree
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Properties of minimax

− Complete? Yes (if tree is finite)

− Optimal? Yes (against an optimal opponent)

− Time complexity? O(bm)

− Space complexity? O(bm) (depth-first exploration)

− For chess, b ≈ 35, m ≈ 100 for “reasonable” games
Ü exact solution completely infeasible!
Ü would like to eliminate (large) parts of game tree
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α-β pruning example
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α-β pruning example
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α-β pruning example
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α-β pruning example
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α-β pruning example
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α-β pruning example

− Are minimax value of root and, hence, minimax decision
independent of pruned leaves?

− Let pruned leaves have values u and v , then

MINIMAX (root) = max(min(3, 12, 8),min(2, u, v),min(14, 5, 2))

= max(3,min(2, u, v), 2)

= max(3, z , 2) where z ≤ 2

= 3

− Yes!

14



Properties of α-β

− Pruning does not affect final result (as we saw for
example)

− Good move ordering improves effectiveness of pruning
(How could previous tree be better?)

− With “perfect ordering”, time complexity O
(
bm/2

)
I branching factor goes from b to

√
b

I (alternative view) doubles depth of search compared to
minimax

− A simple example of the value of reasoning about which
computations are relevant (a form of meta-reasoning)
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Why is it called α-β?

− α is the value of the best
(i.e., highest-value) choice
found so far at any choice
point along the path for MAX

− If v is worse than α, MAX
will avoid it
Ü prune that branch

− Define β similarly for MIN
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The α-β algorithm

− α is value of the best i.e. highest-value choice found so
far at any choice point along the path for MAX

− β is value of the best i.e. lowest-value choice found so far
at any choice point along the path for MIN
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The α-β algorithm
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Resource limits

− Suppose we have 100 secs, explore 104 nodes/sec
Ü 106 nodes per move

− Standard approach:

I cutoff test: e.g., depth limit (perhaps add quiescence
search, which tries to search interesting positions to a
greater depth than quiet ones)

− evaluation function
= estimated desirability of position
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Evaluation functions

− For chess, typically linear weighted sum of features

EVAL(s) = w1f1(s) + w2f2(s) + ... + wnfn(s)

where each wi is a weight and each fi is a feature of
state s

− Example

I queen = 1, king = 2, etc.
I fi : number of pieces of type i on board
I wi : value of the piece of type i
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Cutting off search

− Minimax Cutoff is identical to MinimaxValue except

− TERMINAL-TEST is replaced by CUTOFF
− UTILITY is replaced by EVAL

− Does it work in practice?
bm = 106, b = 35 Ü m = 4

− 4-ply lookahead is a hopeless chess player!

I 4-ply ≈ human novice
I 8-ply ≈ typical PC, human master
I 12-ply ≈ Deep Blue, Kasparov
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Deterministic games in practice
− Checkers: Chinook ended 40-year-reign of human world

champion Marion Tinsley in 1994. Used a precomputed
endgame database defining perfect play for all positions
involving 8 or fewer pieces on the board, a total of 444
billion positions.

− Chess: Deep Blue defeated human world champion Garry
Kasparov in a six-game match in 1997. Deep Blue
searches 200 million positions per second, uses very
sophisticated evaluation, and undisclosed methods for
extending some lines of search up to 40 ply.

− Othello: human champions refuse to compete against
computers, who are too good.

− Go: human champions used to refuse to compete against
computers, who are too bad. In Go, b ¿ 300, so most
programs use pattern knowledge bases to suggest
plausible moves. 2016: AlphaGo
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Summary

− Games are fun to work on!

− They illustrate several important points about AI

− Perfection is unattainable Ü must approximate

− Good idea to think about what to think about
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