Inf2D 02: Problem Solving by
Searching

Valerio Restocchi

School of Informatics, University of Edinburgh
16/01,/20

informatics

Slide Credits: Jacques Fleuriot, Michael Rovatsos, Michael Herrmann, Vaishak Belle

Outline

— Problem-solving agents
— Problem types

— Problem formulation
— Example problems

— Basic search algorithms

Problem-solving agents

function SIMPLE-PROBLEM-SOLVING-AGENT (percept) returns an action
persistent: seq, an action sequence, initially empty
state, some description of the current world state
goal, a goal, initially null
problem, a problem formulation
state € UPDATE-STATE(state, percept)
if seq is empty then do
goal € FORMULATE-GOAL (state)
problem € FORMULATE-PROBLEM(state, goal)
seq € SEARCH(problem)
if seq = failure then return a null action
action < FIRST(seq)
seq < REST(seq)
return action

Agent has a " Formulate, Search, Execute”

Example: Romania

— On holiday in Romania; currently in Arad.

— Flight leaves tomorrow from Bucharest

Formulate goal:

» be in Bucharest

Formulate problem:

» states: various cities
» actions: drive between cities

— Find solution:

» sequence of cities, e.g., Arad, Sibiu, Fagaras, Bucharest

Example: Romania

Problem types

— Deterministic, fully observable — single-state problem

> Agent knows exactly which state it will be in; solution is
a sequence

— Non-observable — sensorless problem (conformant
problem)

» Agent may have no idea where it is; solution is a
sequence

Nondeterministic and /or partially observable —
contingency problem —

» percepts provide new information about current state
» often interleave search, execution

— Unknown state space — exploration problem

Example: vacuum world

— Single-state, start in #b5.

Solution?

IR S kS

NIk SER NN

Example: vacuum world

1 | =) 2 =)
o8 | BB L
_ Ginole : 3 4
Single-state, start in #5. “.@ . =)
Solution: [Right, Suck] 5 | =) 6 =)
L3 L3
7 | =) 8 =)

— Sensorless, start in {1,2,3,4,5,6,7,8} e.g., Right goes
to {2,4,6,8}

Solution?

Example: vacuum world

— Sensorless, start in {1,2,3,4,5,6,7,8} e.g., Right goes
to {2,4,6,8}

Solution: [Right, Suck, Left, Suck]

— Contingency

» Nondeterministic: 1 | =) 2 =)
Suck may dirty a o | o= bl
clean carpet 3 [0 4 -0

» Partially observable: al el
location, dlrt.at 5 [. =
current location. a8 R

» Percept: [L, Clean],

i.e., start in #5 or #7 7 |4 e =4

Solution?

Example: vacuum world

— Contingency

» Nondeterministic: 1 ‘f 7R
Suck may dirty a 3 [
clean carpet)

» Partially observable:
location, dirt at 5 | =) s
current location.

» Percept: [L, Clean], 7 | =)
i.e., start in #5 or #7

NI SRR NI

Solution: [Right, if dirt then Suck|

10

Single-state problem formulation
A problem is defined by four items:
— initial state e.g., “in Arad”
— actions or successor function S (x) =set of action—state
pairs

» eg., S(Arad) = {(Arad — Zerind, Zerind),...}

— goal test, can be
> explicit, e.g., x = “in Bucharest”
» implicit, e.g., Checkmate(x)

— path cost (additive)

» e.g., sum of distances, number of actions executed, etc.
» c(x,a,y) is the step cost of taking action a in state x to
reach state y, assumed to be > 0

— A solution is a sequence of actions leading from the initial
state to a goal state

11

Selecting a state space

Real world is absurdly complex — state space must be
abstracted for problem solving

(Abstract) state = set of real states
(Abstract) action = complex combination of real actions

» e.g., “Arad — Zerind" represents a complex set of
possible routes, detours, rest stops, etc.

For guaranteed realizability, any real state “in Arad” must
get to some real state “in Zerind”

(Abstract) solution =

P set of real paths that are solutions in the real world

Each abstract action should be “easier” than the original
problem

12

Vacuum world state space graph

chg - —" :QDH

TR

TED (T2

C

A'H
O

=)
SN

— states?
— actions?
— goal test?
— path cost?

13

Vacuum world state space graph

e e [

C

T D (& 1 s

m*L

A'ﬁ
-
LCEQ - ‘£Q"

SN

— states? Pair of dirt and robot locations
— actions? Left, Right, Suck
— goal test? no dirt at any location

— path cost? 1 per action

14

Example: The 8-puzzle

7 2 4
5 6
8 3 1
Start State

— states?

— actions?

— goal test?

— path cost?

4

7

Goal State

15

Example: The 8-puzzle

7 2 4 1

5 6 3 4

8 3 1 6 7
Start State Goal State

— states? locations of tiles
— actions? move blank left, right, up, down
— goal test? = goal state (given)

— path cost? 1 per move

Example: robotic assembly

P

— states?: real-valued coordinates of robot joint angles &
parts of the object to be assembled

— actions?: continuous motions of robot joints
— goal test?”: complete assembly

— path cost?: time to execute

17

Tree search algorithms

— Basic idea:

» offline, simulated exploration of state space by
generating successors of already-explored states (a.k.a.
expanding states)

function TREE-SEARCH(problem) returns a solution, or failure
initialize the frontier using the initial state of problem
loop do
if the frontier is empty then return failure
choose a leaf node and remove it from the frontier
if the node contains a goal state then return the corresponding solution
expand the chosen node, adding the resulting nodes to the frontier

Tree search example

4 _h‘m Timisoaia) ¢ Zaind

_Aad) 'VV:VJE‘HJV‘E;. \'H—w Rimria Viced) f;% ad) ¢ Luo]) ¢ Aad) 7 Oradea

19

Tree search example

20

Tree search example

21

Implementation: general tree search

function TREE-SEARCH(problem) returns a solution, or failure
initialize the frontier using the initial state of problem
loop do
if the frontier is empty then return failure
choose a leaf node and remove it from the frontier
if the node contains a goal state then return the corresponding solution
expand the chosen node, adding the resulting nodes to the frontier

function CHILD-NODE (problem, parent, action) returns a node
return a node with
STATE = problem.RESULT (parent.STATE, action),
PARENT = parent, ACTION = action,

PATH-COST = parent.PATH-COST + problem.STEP-COST (parent.STATE,
action)

Implementation: states vs. nodes

— A state is a (representation of) a physical configuration

— A node is a book-keeping data structure constituting part
of a search tree includes state, parent node, action, path
cost

Node

STATE

ACTION = Right
PATH-COST = 6

-
-]
-]

— Using these it is easy to compute the components for a
child node. (The CHILD-NODE function)

23

Summary

— Problem formulation usually requires abstracting away
real-world details to define a state space that can feasibly
be explored.

24

