
Inf2D 02: Problem Solving by
Searching

Valerio Restocchi

School of Informatics, University of Edinburgh

16/01/20

Slide Credits: Jacques Fleuriot, Michael Rovatsos, Michael Herrmann, Vaishak Belle



Outline

− Problem-solving agents

− Problem types

− Problem formulation

− Example problems

− Basic search algorithms

2



Problem-solving agents

Agent has a “ Formulate, Search, Execute”

3



Example: Romania

− On holiday in Romania; currently in Arad.

− Flight leaves tomorrow from Bucharest

− Formulate goal:

I be in Bucharest

− Formulate problem:

I states: various cities
I actions: drive between cities

− Find solution:

I sequence of cities, e.g., Arad, Sibiu, Fagaras, Bucharest

4



Example: Romania

5



Problem types

− Deterministic, fully observable → single-state problem

I Agent knows exactly which state it will be in; solution is
a sequence

− Non-observable → sensorless problem (conformant
problem)

I Agent may have no idea where it is; solution is a
sequence

− Nondeterministic and/or partially observable →
contingency problem –

I percepts provide new information about current state
I often interleave search, execution

− Unknown state space → exploration problem

6



Example: vacuum world

− Single-state, start in #5.

Solution?

7



Example: vacuum world

− Single-state, start in #5.

Solution: [Right, Suck]

− Sensorless, start in {1, 2, 3, 4, 5, 6, 7, 8} e.g., Right goes
to {2, 4, 6, 8}

Solution?

8



Example: vacuum world
− Sensorless, start in {1, 2, 3, 4, 5, 6, 7, 8} e.g., Right goes

to {2, 4, 6, 8}

Solution: [Right, Suck, Left, Suck]

− Contingency

I Nondeterministic:
Suck may dirty a
clean carpet

I Partially observable:
location, dirt at
current location.

I Percept: [L, Clean],
i.e., start in #5 or #7

Solution?
9



Example: vacuum world

− Contingency

I Nondeterministic:
Suck may dirty a
clean carpet

I Partially observable:
location, dirt at
current location.

I Percept: [L, Clean],
i.e., start in #5 or #7

Solution: [Right, if dirt then Suck]

10



Single-state problem formulation
A problem is defined by four items:

− initial state e.g., “in Arad”

− actions or successor function S (x) =set of action–state
pairs
I e.g., S (Arad) = {〈Arad→ Zerind, Zerind 〉 , . . . }

− goal test, can be
I explicit, e.g., x = “in Bucharest”
I implicit, e.g., Checkmate(x)

− path cost (additive)
I e.g., sum of distances, number of actions executed, etc.
I c (x , a, y) is the step cost of taking action a in state x to

reach state y, assumed to be ≥ 0

− A solution is a sequence of actions leading from the initial
state to a goal state

11



Selecting a state space

− Real world is absurdly complex → state space must be
abstracted for problem solving

− (Abstract) state = set of real states

− (Abstract) action = complex combination of real actions

I e.g., “Arad → Zerind” represents a complex set of
possible routes, detours, rest stops, etc.

− For guaranteed realizability, any real state “in Arad” must
get to some real state “in Zerind”

− (Abstract) solution =

I set of real paths that are solutions in the real world

− Each abstract action should be “easier” than the original
problem

12



Vacuum world state space graph

− states?

− actions?

− goal test?

− path cost?

13



Vacuum world state space graph

− states? Pair of dirt and robot locations

− actions? Left, Right, Suck

− goal test? no dirt at any location

− path cost? 1 per action

14



Example: The 8-puzzle

− states?

− actions?

− goal test?

− path cost?

15



Example: The 8-puzzle

− states? locations of tiles

− actions? move blank left, right, up, down

− goal test? = goal state (given)

− path cost? 1 per move

16



Example: robotic assembly

− states?: real-valued coordinates of robot joint angles &
parts of the object to be assembled

− actions?: continuous motions of robot joints

− goal test?: complete assembly

− path cost?: time to execute

17



Tree search algorithms

− Basic idea:

I offline, simulated exploration of state space by
generating successors of already-explored states (a.k.a.
expanding states)

18



Tree search example

19



Tree search example

20



Tree search example

21



Implementation: general tree search

22



Implementation: states vs. nodes
− A state is a (representation of) a physical configuration

− A node is a book-keeping data structure constituting part
of a search tree includes state, parent node, action, path
cost

− Using these it is easy to compute the components for a
child node. (The CHILD-NODE function)

23



Summary

− Problem formulation usually requires abstracting away
real-world details to define a state space that can feasibly
be explored.

24


