Inf2C tutorial SE2: Writing Good Code

1 Before the tutorial

Read through this tutorial sheet.

1. Can you find code in your project (the one you're doing the assignment on) that could
be improved following suggestions here or in the lectures? Or, can you find a piece of
code that’s hard to understand, even if you can’t see how it could be improved?

2. Go back to a piece of Java code you've written in Infl or Inf2. Can it be improved?
How?

Take with you to the tutorial one or more printed pages of code with things you think could
be improved highlighted. Be prepared to explain to the group what you think the problem
is, and if possible, to suggest improvements.

2 Code inspection checklist

In a code review, a group of people study a section of code looking for possible problems with
it — ways in which it might not be doing what it should now, or ways in which it might be
hard to maintain in future. A few of the things a code review will look for are:

1. A one- or two-sentence description of each public method and class, possibly in Javadoc.
(If it’s not possible to summarise the functionality in one or two sentences, the method
or class may be doing several unrelated things and may need to be split.)

2. Bad smells in the code (see next section)
3. Bad names (of classes, methods, attributes etc.), including:

e names that don’t explain what the thing is, e.g. ¢

e names that don’t adhere to coding standards (e.g. universal convention in Java: all
classes start with a capital letter e.g. Customer, all instance variables and methods
with lower case, e.g. balance, getBalance);

e names that include type names, e.g. customerArray (exercise: why?). More
subtly, order.add (item) is better than order.addItem(item): if you trust people
to name their variables meaningfully, you can avoid redundancy in your names.

4. Off-by-one errors in for loops.

5. Objects compared using == instead of equals (the latter is almost always what’s
wanted).

6. Possible dereferencing of null pointers.

7. Exceptions: are they all properly handled, not by blank catch sections that should have
something in them?

8. Resource problems: e.g. are the acquisition and release of locks, database handles etc.
correct?

9. Unit tests: are all present that should be? Are they correct?

3 Bad smells in code

Sometimes code “smells bad” — there’s something about it that will make an experienced
developer suspect that it’s of poor quality, even before looking at what it’s supposed to do.
Kent Beck and Martin Fowler have identified a collection of “bad smells” in code. Here are
a few of them.

Comments Comments at the beginning of a method that specify what a method does, e.g. in
Javadoc, are not a bad smell, but a method which is densely commented inside its code
is suspicious. Often it’s a sign that the code is hard to read — could it be improved? A
block of comment explaining what the next section of the method does often indicates
a section of code that would be better separated out into its own method (with the
comments then becoming the (Javadoc) specification of that method. A comment that
explains what should be true at a point in the code should be replaced with a Java
assertion. Good uses for comments (within reason) include noting when you’re not sure
whether to do something one way or another way, or explaining why you’ve decided to
do it this way instead of some other way that might have seemed more obvious.

Long method Methods in a good object-oriented program almost always fit onto one screen:
many methods will be just a few lines. This makes the code easier to understand and
reuse, provided that you use well-chosen method names, which explain what the method
does. If a method is long, look for ways to simplify and restructure it, usually by
separating out part of the code (the body of a loop? an if or else clause? a not-very-
closely-connected chunk?) into its own method. This smell often goes with the one
above. E.g., if the code of a long method has a comment “Next we wizzle the froboz”,
it’s probably best to separate out the next chunk of code into a separate (private)
method, maybe called wibbleFroboz: then calling the method replaces the comment.
It’s OK if wibbleFroboz is only called this once, but if you pick meaningful chunks of
functionality to separate out in this way, you often will find that they’re needed again
later.

Long parameter list It’s hard to remember a long list of parameters to a method and what
order they go in. Using global variables is worse, of course (why?) — but think twice
about passing in something that the method could compute. E.g., don’t pass in two
parameters which will be got from the same object: pass the object in instead, and let
the method get both pieces of data when it needs them.

Duplicated code Or, just as common and more difficult to deal with, nearly duplicated
code. Is there a reason for the differences? (Or is it a mistake that they’re not exactly

the same?) Can you replace the nearly duplicated code by a private method, maybe
with a parameter to account for the variants?

Large class Look at the largest class in your system — by any metric, e.g. most lines of code,
most instance variables, most methods. Is it coherent, or would it be clearer to split it
into more than one class? Is there code duplication?

Switch statements Java has a switch statement, but it’s almost always the wrong way to
solve the problem. Could polymorphism do the job instead?

Speculative generality E.g., methods that don’t actually do anything but are placeholders
for maybe doing something in future, or parameters that aren’t yet used. They add
complication for no value: if they ever are needed, it’s easy enough to add them then.
Keep it simple. You Ain’t Gonna Need It.

4 Refactoring: improving existing code

Refactoring code is improving its quality without changing its functionality. It includes
minor changes e.g. to improve variable names, and more major changes to restructure the
code and improve its design. It can remove bad smells in code. Some refactorings are one-
offs, but many are common, e.g., factoring out a chunk of a long method. These can be
described systematically, and ultimately automated, at least to some extent: that is, a tool
(e.g. Eclipse) can give the programmer an easy way to choose a refactoring to apply, and
can then automate the actual edit of the code. See http://www.refactoring.com for more
information.

Moral: if you keep your code clean, readable and well-designed at all times, then it’s
easy to change the functionality when you need to. And then you don’t need to put things
in now in case you need them later. And then it’s easier to keep your code clean, etc....

