Inf2C, Computer Systems: Tutorial 2, Week 5
Guide for tutors

Stratis Viglas

1. Memory copy function. Write a function in MIPS assembly that will
perform a copy of a block of given words from one memory location to
another. The function input parameters are the initial (lowest) source
address, the initial target address and the number of words to copy.

Answer The possibility of overlapping blocks makes this harder than it
might first appear to the students. It is probably best to ask them to write a
simple version first, ignoring these problems and then ask them to modify
their program. It may be a good idea to do this in small groups.

Here is a sample for this first simple version. We assume $a0 is the source
address, $al is the destination address, and $a2 is the length in words.

sll $a2, $a2, 2 # multiply by 4 to convert
length to bytes
add $t1, $a0, $a2 # address of the end of the block
loop:
slt $t0, $a0, $t1 # tO is 1 if there is still copying
to be done
beq $t0, $zero, done
1w $t2, 0($a0) # read from source
sw $t2, 0($al) # write to destination
addi $a0, $al, 4 # increment source address
addi $al, $al, 4 # increment destination address
J loop
done:

Here, the addresses are compared rather than incrementing the index vari-
able and comparing it with the length. This is faster, but feel free to use
the other method.

This is what is meeded to solve the overlapping problem: If the source
address is lower than the target address, you can safely copy words from
the highest address down to the lowest. If the source address is higher than
the destination address, then it’s safe to copy from the lowest address up
to the highest.

sl1 $a2, $a2, 2 # convert length to bytes

slt $t0, $a0, $a1l # $tO0 is 1 if source lower
than destination
beq $t0, $zero, src_high # source lower, so

copy from high
address down

add $t1, $al0, $a2 # point to last word +1
addi $t1, $t1, -4 # t1 is last word of source
add $t2, $al, $a2
addi $t2, $t2, -4 # t2 is last word of destination
addi $t3, $a0, -4 # address to stop looping
1i $t4, -4 # will use t4 to increment.
Negative since we’re moving down
J loop
src_high:
add $t1, $a0, $zero
add $t2, $al, $zero
add $t3, $a0, $a2 # address to stop looping
1i $t4, 4 # positive increment in this case
loop:
beq $t3, $t1, end
1w $t5, 0($t1)
sW $t5, 0($t2)
add $t1, $t1, $t4
add $t2, $t2, $t4
J loop
end:

Again, you can start with a solution where there are two separate loops,
one for each direction of memory traversal and improve it by observing
they can be joined into one.

2. Memory copy function refinement. Suppose we want to change the
granularity of the memory copy function from words to bytes. How can
the above program be converted to do this efficiently? Note that a load
or store word (4 bytes) takes one cycle, as does loading or storing a byte.

Answer The simple solution here is use the code above with the only
change that we use the load/store byte instructions instead of word in-
structions and the pointers are incremented by 1 instead of 4.

However, this would be very slow if large chunks of memory are to be
copied. It is worth investigating if we can use word load/store as much as
possible and only copy bytes at the two edges of the arrays if needed.

Unfortunately, this only works when the source and destination addresses
are either both aligned or misaligned in the same way.

3. C and fun with pointers.

()

What will the following piece of C code do and why?

int *a = 10; *a = 100;

Answer It will crash. The reason is that the statement int *a
= 10; assigns a value to the pointer, making it point to address
000000004 in memory. However, this memory has not been al-
located and is not accessible by the user’s program. Then, statement
*q = 100; tries to change that piece of memory and give it a value
of 100, which results in the program crashing.

Spend some time discussing pointers, references, and pointer de-
referencing (e.g., in the previous example, the difference between us-
ing a and *a).

If there is something wrong with the previous C code, can you fix it?
Answer Basically make the pointer point to something on the heap,
either through malloc(), or by using an additional integer variable
and assigning its address to a, i.e., either:

int *a = (int *) malloc(sizeof(int));

or

int x; int *a = &x;

Spend some time explaining to the students the concept of the pro-
gram’s heap and that any data a program manipulates needs to be on
the heap before it can be accessed.

Given the following declaration:

int **array;

allocate a triangular array of n rows. That is, row 0 should have
1 column, row 1 should have 2 columns and so on. Each cell of
a column should have an initial value equal to the current row, i.e.,
array[0] [0] == 0, array[1] [0] == array[1][1] == 1 andsoon.

Answer Here’s a sample implementation:

int n;
int **array;
n=...;

int i, j;
array = (int **) malloc(n*sizeof (int *));
// iterate over rows
for (i = 0; i < mn; i++) {
array[i] = (int *) malloc(n*sizeof (int));
for (j = 0; j < i; j++)
array[i]l [j] = i; // or *(x(array+i)+j)
}

Spend some time talking about memory allocation. Explain the dif-
ference of the two malloc() calls: the first ones allocates as many

pointers to integers as there are rows in the array, the second one
allocates as many integers as there are columns in each row.

How would you de-allocate the array you allocated in the previous
question?

Answer Memory is de-allocated in inverse allocation order:

for (i = 0; i < n; i++)
free(array[il); // de-allocate each row
free(array); // de-allocate the table

Give the students the standard lecture on why they must make sure
to de-allocate any memory they allocate and why not doing so is a
Bad Thing that gives you a one-way first-class ticket to programming

Hell (at least in C).

