
Software development processes: from the
waterfall to the Unified Process

Perdita Stevens

School of Informatics
University of Edinburgh



The Waterfall Model

Image from Wikipedia



Pros, cons and history of the waterfall

+ better than no process at all – makes clear that
requirements must be analysed, software must be
tested, etc.

− inflexible and unrealistic – in practice, you cannot
follow it: e.g., verification will show up problems with
requirements capture.
slow and expensive – in an attempt to avoid
problems later, end up “gold plating” early phases,
e.g., designing something elaborate enough to
support the requirements you suspect you’ve missed,
so that functionality for them can be added in coding
without revisiting Requirements.

Introduced by Winston W. Royce in a 1970 paper

as an obviously flawed idea!



Pros, cons and history of the waterfall

+ better than no process at all – makes clear that
requirements must be analysed, software must be
tested, etc.

− inflexible and unrealistic – in practice, you cannot
follow it: e.g., verification will show up problems with
requirements capture.
slow and expensive – in an attempt to avoid
problems later, end up “gold plating” early phases,
e.g., designing something elaborate enough to
support the requirements you suspect you’ve missed,
so that functionality for them can be added in coding
without revisiting Requirements.

Introduced by Winston W. Royce in a 1970 paper

as an obviously flawed idea!



Spiral models

Split project into controlled iteration: each iteration is a
mini-waterfall.

+ Mitigate risk. E.g. check user requirements, try out
technology, practice new techniques in an early iteration to
catch errors before main cost of project starts.

− Cost: e.g., repeated testing and documentation. A few
projects are so low risk that iteration isn’t cost-effective.

In practice, need for rework: essential to allow time for
refactoring.

Big projects need different approaches to different iterations.



Steps towards the Unified Process

I 1960s - 1987: Ivar Jacobson at Ericsson: early
component-based development, architectural block diagrams.

I 1987-1995: Jacobson founded Objectory (contraction of
“Object factory”), added use cases

I 1995: Grady Booch, Jim Rumbaugh and Ivar Jacobson
together at Rational, which bought Objectory. “The methods
war is over – we won.” First version of Unified Method
produced. Controversial: quickly overshadowed by UML.

I 1995-1997: Rational Objectory: added controlled iteration

I 1998: (Rational) Unified Process

Unified process: the public domain, generic ideas

Rational unified process: more detailed, commercial. Now IBM.

Lots of variants, e.g. OpenUP, EnterpriseUP...



Characteristics of UP

Controlled
iterative

Use−Case
Driven

Architecture
Centric

Tailorable

Get early feedback

Business needs drive
application requirements

Understand user
requirements

Improve quality

Tailor the process

Increase reuse

Extensibility

Mitigate major risks
early

Early user access

(adapted from Rational slide)



The four Ps

I People

I Project

I Product

I Process



Workflows (one variant)

Engineering workflows:

I Business modelling

I Requirements

I Analysis and design

I Implementation

I Test

I Deployment

Supporting workflows:

I Configuration and change management

I Project management

I Environment (e.g. process and tools)



UP phases (iterative: end with review)

I Inception ends with commitment from the project sponsor to
go ahead: business case for the project and its basic feasibility
and scope known.

I Elaboration ends with
I basic architecture of the system in place,
I a plan for construction agreed,
I all significant risks identified,
I major risks understood enough not to be too worried.

I Construction (definitely iterative) ends with a beta-release
system .

I Transition is the process of introducing the system to its users.



Workflows against phases

(adapted from Rational slide)


