
Secure programming

Perdita Stevens

School of Informatics
University of Edinburgh



What is secure programming?

Mostly, not doing things.

In particular, not doing things that lead to the possibility of
information being inappropriately released or modified, or
unauthorized programs being executed.

In summary, confidentiality, integrity, availability.

Typical Java projects have 1–2 security-critical defects per kLoc. . .



Why be paranoid?

Because they are out to get you.

There is a large number of people out on the Net who will attack
your system. Some are “script kiddies”; some are spammers; some
are extortionists . . .

Our perimeter firewall blocks several hundred thousand probes per
day.



Typical attack

Machine runs a publicly accessible service, such as sshd.

Attackers send a carefully crafted very long string to sshd. sshd
didn’t check length of input from network – input buffer overflows
into program code or function stack.

Result: attacker gets their code executed by sshd – which runs
privileged. Machine is now totally compromised, as is everything
that trusts it.

Once discovered, such a penetration costs many person-weeks of
effort to clear up after.

Attacker may, of course, be authorized user of machine, trying to
get unauthorized privilege. Or an authorized user who has been
cracked . . .



Security

is a huge topic. See third year course Computer Security.

Here we will not discuss topics such as multi-level security,
encryption, operating system exploits, . . .

We just consider programming practices in normal application
software.



Validate input

Many attacks work (as above) by handing the program illegal input
that causes unintended behaviour. So validate input:

I deal with input of any length

I deal with arbitrary binary bytes (beware character encoding
systems)

I check for specific escape characters (e.g. HTTP, HTML)

I ensure numerical data is within intended range

I check validity of URLs, filenames, etc.

I check cookies (ideally, only ever send out cryptographically
signed data in cookies)

Beware that doing validity checking is not easy. Use a trusted
library if possible.

Note also that this applies to the content of user files!



Validate programmatic input

Sometimes you handle input which is effectively a program that
will be executed by an application. E.g. HTML with Javascript.

It is very hard to check this for malicious usages. Try!



Buffer overflow

The classic attack. The solution: always check the length! Or use
routines that truncate the input to fit the buffer. (But is it OK
silently to change user’s input?)

In pure Java, buffer overflow can’t happen. But Java
implementations may use native C libraries in some classes.



General principles

Follow general principles to reduce possibility of security exposures,
and mitigate results of compromise:

I least privilege: allow people/programs/classes to do only what
they need to do

I KISS! Keep it simple, stupid: clear simple code is easier to
check

I open design: keep the security mechanism public

I complete mediation: validating data is no good if there’s a
back door to get bad data in: make sure validation happens
at a bottleneck

I avoid sharing: data in shared places opens possibilities for
information flow you didn’t expect



Beware race conditions

A race is when two (or more) events happen independently, and
depending on the order, different things happen.

In particular, because of multi-tasking, arbitrary things may be
done by other processes between any two lines of your program.

For example: “create file, protect it” is not safe – attacker may
open file between creation and protection. It must be created in a
safe state.



Reading

Suggested: Ross Anderson’s paper Why Information Security is
Hard: an Economic Perspective (see web)
http://www.cl.cam.ac.uk/ftp/users/rja14/econ.pdf


