
Refactoring

Perdita Stevens

School of Informatics
University of Edinburgh

Refactoring

Refactoring is the process of re-organizing and re-writing code so
that it becomes cleaner, or fits better into the current conception
of the architecture. Refactoring does not change functionality.

Why refactor? Once seen as a kind of maintenance. . .

I You’ve inherited legacy code that’s a mess.

I A new feature is required that necessitates a change in the
architecture.

But can also be an integral part of the development process: agile
methodologies (e.g. XP) advocate continual refactoring (XP
maxim: “Refactor mercilessly”).

What does refactoring do?

A refactoring is a small transformation which preserves correctness.
There are many examples; for a catalogue from Martin Fowler’s
original book Refactoring, see
http://www.refactoring.com/catalog/. Examples:

I Add Parameter

I Change Bidirectional Association to Unidirectional

I Introduce Explaining Variable

I Replace Conditional with Polymorphism

The process of refactoring is that of applying a sequence of
refactorings that improve the design of the system, without adding
functionality.

Eclipse has a built-in refactoring tool (on the Refactor menu). It
performs operations of three broad classes . . .

Renaming and physical organization

A variety of simple (when done automatically) changes, e.g.

I Rename or move files – automatically updating import,
package etc.

I Renaming variables – and associated methods.

I Moving classes between packages

http://www.refactoring.com/catalog/


Rearranging the class structure

Heavier changes, re-organizing the way classes relate. Less used,
but seriously useful when they are used. E.g.

I When an anonymous class gets big, it should turn into a
nested class.

I Moving methods or fields up and down the class hierarchy.

I Extracting an interface from a class.

Intra-class refactorings

The bread-and-butter of refactoring: rearranging code within a
class to improve readability etc. E.g.

I Extracting code from method into new method.

I Encapsulating fields in accessor methods.

I Change the type of a method (think about it. . . )

Safe refactoring

How do you know refactoring hasn’t changed/broken something?

Perhaps somebody has proved that a refactoring operation is safe.

More realistically:

test, refactor, test

This works better the more tests you have: ideally, unit tests for
every class.

Reading

Required: The article ‘Refactoring for everyone’ at
http://www.ibm.com/developerworks/opensource/
library/os-ecref/. Aim to remember: what refactoring is,
and a few examples, not the details of the refactorings
discussed here.

Suggested: browse around Fowler’s page at
http://www.refactoring.com/.

http://www.ibm.com/developerworks/opensource/library/os-ecref/
http://www.ibm.com/developerworks/opensource/library/os-ecref/
http://www.refactoring.com/


Quote of the day

Refactoring provides enough energy to a system for it
to relax into a new and more comfortable state, a new
local minimum. The effect of refactoring commonality is
to tame the complexity of your system.

K. Henney


