
Design Patterns

Perdita Stevens

School of Informatics
University of Edinburgh

Design Patterns

“Reuse of good ideas”

A pattern is a named, well understood good solution to a common
problem in context.

Experienced designers recognise variants on recurring problems and
understand how to solve them. Without patterns, novices have to
find solutions from first principles.

Patterns help novices to learn by example to behave more like
experts.

Patterns: background and use

Idea comes from architecture (Christopher Alexander): e.g.
Window Place: observe that people need comfortable places to
sit, and like being near windows, so make a comfortable seating
place at a window.

Similarly, there are many commonly arising technical problems in
software design.

Pattern catalogues: for easy reference, and to let designers talk
shorthand. Pattern languages are a bit more...

Patterns also used in: reengineering; project management;
configuration management; etc.

Elements of a pattern

A pattern catalogue entry normally includes roughly:

I Name (e.g. Publisher-Subscriber)

I Aliases (e.g. Observer, Dependants)

I Context (in what circumstances can the problem arise?)

I Problem (why won’t a naive approach work?)

I Solution (normally a mixture of text and models)

I Consequences (good and bad things about what happens if
you use the pattern.)



A very simple recurring problem

We often want to be able to model tree-like structures of objects:
an object may be a thing without interesting structure – a leaf of
the tree – or it may itself be composed of other objects which in
turn might be leaves or might be composed of other objects...

We want other parts of the program to be able to interact with a
single class, rather than having to understand about the structure
of the tree.

Composite is a design pattern which describes a well-understood
way of doing this.

Example situation

A graphics application has primitive graphic elements like lines,
text strings, circles etc. A client of the application interacts with
these objects in much the same way: for example, it might expect
to be able to instruct such objects to draw themselves, move,
change colour, etc. Probably there should be an interface or an
abstract base class, say Graphics, which describes the common
features of graphics elements, with subclasses Text, Line, etc.

Want to be able to group elements together to form pictures,
which can then be treated as a whole: for example, users expect to
be able to move a composite picture just as they move primitive
elements.

Naive solution

Create a new class, say Container, which contains collection of
Graphics elements.

Rewrite the clients so that instead of blindly sending a draw()
message to a Graphics object, they

1. check whether they are dealing with a container;

2. if so, they get its collection of children and send the message
to each child in turn.

Drawbacks of naive solution

Every client now has to be aware of the Container class and to do
extra work to handle the fact that they might be dealing with a
Container.

And can a Container contain other Containers? Not if we
implement Container and Graphics as unrelated classes with the
Container having a collection of Graphics objects.



Familiar (?) way to do this kind of task in Haskell

data graphicsElement =
Line

| Text
| Circle
| Picture [graphicsElement]

draw Line = -- whatever
draw Text = -- whatever
draw Circle = -- whatever
draw (Picture l) = (let x = map draw l in ())

Drawbacks of the Haskell way

Clients must write recursive functions which pattern-match on the
structure of the graphicsElement they have, so all clients do in fact
have to be aware of how elements of the datatype are built up.

But this is just an example of how this mechanism does not
support abstraction as well as we’d like: you can’t
(straightforwardly) wrap up the functions that should operate on a
graphicsElement along with the datatype itself.

(Or can you? This example adapted from ML, and I don’t speak Haskell...)

Composite pattern: best of both worlds

Line

draw()

Circle

draw()

Text

draw()

Graphic

draw()

Picture

draw()

for all g

g.draw()

Benefits of Composite

I can automatically have trees of any depth: don’t need to do
anything special to let containers (Pictures) contain other
containers

I clients can be kept simple: they only have to know about one
class, and they don’t have to recurse down the tree structure
themselves

I it’s easy to add new kinds of Graphics subclasses, including
different kinds of pictures, because clients don’t have to be
altered



Drawbacks of Composite

I It’s not easy to write clients which don’t want to deal with
composite pictures: the type system doesn’t know the
difference.
(A Picture is no more different from a Line than a Circle is,
from the point of view of the type checker.)

(What could you do about this?)

Cautions on pattern use

Patterns are very useful if you have the problem they’re trying to
solve.

But they add complexity, and often e.g. performance penalties too.
Exercise discretion.

You’ll find the criticism that the GoF patterns in particular are
“just” getting round the deficiencies of OOPLs. This is true, but
misses the point.

Exercise: write a pattern language for Haskell!

MCQ (from 05/06 exam)

Which of the following best describes a design pattern?

1. a particular arrangement of associations between classes

2. a generic solution to a common problem

3. a variant of use cases

4. a type of design attracting specific legal protection

Patterns: Reading

Required: Wikipedia entries on Observer and Template Method (or
equivalent: what I want you to do is to know and understand
those patterns to the extent that you could use them, describe
them in UML class and sequence diagrams, and explain what
they achieve and how).

Suggested: Read more on design patterns, e.g. starting at Stevens
or Somerville, Ch18.2 (in both cases!!), or
http://en.wikipedia.org/wiki/Design_Patterns.

http://en.wikipedia.org/wiki/Design_Patterns

