Trial clicker question :-)

1. I've got my clicker

2. I've got my clicker and I've turned it on

3. Oh yes, turn it on

4. I've got it and turned it on but it still doesn't seem to work

5. | forgot to come and collect my clicker



Inf2C: Software Engineering

Perdita Stevens

School of Informatics
University of Edinburgh



About Inf2C

Inf2C is a 20-credit course covering software engineering and
systems.

The two threads are taught more or less independently — Perdita
Stevens doing software engineering, and Stratis Viglas with
Marcelo Cintra doing systems.

We will alternate threads week by week (roughly)
Each thread has independent practicals, but there is only one exam.

Notes, practicals etc. will appear on the course web site.



About this course

This is the Software Engineering half of Inf2C.

» 15 lectures, introduction to software engineering.
» Java programming in the large, using IDE (Eclipse).
» Basic modelling using the Unified Modeling Language (UML).

» Basic SE techniques, and when and why to use them.



Learning outcomes

>

Motivate and describe the activities in the software
engineering process.

» Construct use cases for an application scenario.

» Explain and construct UML class diagrams and sequence

diagrams.

Build, document and maintain large Java programs using a
modern IDE, rapid development methods, and configuration
management tools.

Explain how a software system and its construction may be
assessed using testing, metrics, and verification techniques.
Evaluate aspects of human usability of an application program
or web site.

Judge the security risks in software construction and show
how to avoid or reduce them.

Compare different approaches to software licensing.
[m] = =

i
it
)
»
Q



Learning outcomes

>

Motivate and describe the activities in the software
engineering process.

» Construct use cases for an application scenario.

» Explain and construct UML class diagrams and sequence

diagrams.

Build, document and maintain large Java programs using a
modern IDE, rapid development methods, and configuration
management tools.

Explain how a software system and its construction may be
assessed using testing, metrics, and verification techniques.
Evaluate aspects of human usability of an application program
or web site.

Judge the security risks in software construction and show
how to avoid or reduce them.

Compare different approaches to software licensing.
[m] = =

i
it
N
»
i)



Learning outcomes

>

Motivate and describe the activities in the software
engineering process.

» Construct use cases for an application scenario.

» Explain and construct UML class diagrams and sequence

diagrams.

Build, document and maintain large Java programs using a
modern IDE, rapid development methods, and configuration
management tools.

Explain how a software system and its construction may be
assessed using testing, metrics, and verification techniques.

Evaluate aspects of human usability of an application program
or web site.

Judge the security risks in software construction and show
how to avoid or reduce them.

Compare different approaches to software licensing.
[m] = =




Learning outcomes

» Motivate and describe the activities in the software
engineering process.

» Construct use cases for an application scenario.

» Explain and construct UML class diagrams and sequence
diagrams.

» Build, document and maintain large Java programs using a
modern IDE, rapid development methods, and configuration
management tools.

» Explain how a software system and its construction may be
assessed using testing, metrics, and verification techniques.

» Evaluate aspects of human usability of an application program
or web site.

» Judge the security risks in software construction and show
how to avoid or reduce them.

» Compare different approaches to software licensing.



Learning outcomes

>

Motivate and describe the activities in the software
engineering process.

» Construct use cases for an application scenario.

» Explain and construct UML class diagrams and sequence

diagrams.

Build, document and maintain large Java programs using a
modern IDE, rapid development methods, and configuration
management tools.

Explain how a software system and its construction may be
assessed using testing, metrics, and verification techniques.
Evaluate aspects of human usability of an application program
or web site.

Judge the security risks in software construction and show
how to avoid or reduce them.

Compare different approaches to software licensing.



Learning outcomes

>

Motivate and describe the activities in the software
engineering process.

» Construct use cases for an application scenario.

» Explain and construct UML class diagrams and sequence

diagrams.

Build, document and maintain large Java programs using a
modern IDE, rapid development methods, and configuration
management tools.

Explain how a software system and its construction may be
assessed using testing, metrics, and verification techniques.
Evaluate aspects of human usability of an application program
or web site.

Judge the security risks in software construction and show
how to avoid or reduce them.

Compare different approaches to software licensing.



Learning outcomes

>

Motivate and describe the activities in the software
engineering process.

» Construct use cases for an application scenario.

» Explain and construct UML class diagrams and sequence

diagrams.

Build, document and maintain large Java programs using a
modern IDE, rapid development methods, and configuration
management tools.

Explain how a software system and its construction may be
assessed using testing, metrics, and verification techniques.
Evaluate aspects of human usability of an application program
or web site.

Judge the security risks in software construction and show
how to avoid or reduce them.

Compare different approaches to software licensing.



Learning outcomes

>

Motivate and describe the activities in the software
engineering process.

» Construct use cases for an application scenario.

Explain and construct UML class diagrams and sequence
diagrams.

Build, document and maintain large Java programs using a
modern IDE, rapid development methods, and configuration
management tools.

Explain how a software system and its construction may be
assessed using testing, metrics, and verification techniques.

Evaluate aspects of human usability of an application program
or web site.

Judge the security risks in software construction and show
how to avoid or reduce them.

Compare different approaches to software licensing.



Why do this course?

Because software engineering is fascinating :-)

— blend of human and technical challenges; fast-moving; important



Why do this course?

Because software engineering is fascinating :-)
— blend of human and technical challenges; fast-moving; important

Because for many of you, it's probably the most job-relevant
course you'll do in your Informatics degree. Worth learning it well
enough to remember long-term!



Teaching style

Lectures as guidance and overview (not self-contained notes).

You will need to do considerable study on your own, mostly from
the web. As well as the explicit course material, you will need to
extend and improve your Java skills.

There will be some URLs which you must visit and read. You
should not need to print them, but you should make your own
notes of key points. The lectures will provide questions to help test
your understanding of the material, but you must know more than
the answers to the questions!

Practical coursework: a single exercise, in two parts
Exam: multiple choice and short answer (covering all of Inf2C).

Support: Tutorials. Newsgroup eduni.inf.course.inf2c. Email
only if your query is personal or confidential.



Clickers

During the SE lectures of Inf2C, we'll use “clickers”. The aim is to:

> give us some information about what's clear and what's not

» let you practise multiple choice questions like those in the
exam

» check that something's being absorbed from the compulsory
reading

» engage brains during lectures!

Not individual assessment (in fact | will not know who's got which
clicker).

This will only work if you remember to bring them!



Books

No book is essential.
The following are worth considering:

Somerville, Software Engineering
- Large, classic. Comprehensive on SE, but limited on UML and

Java.

Stevens with Pooley, Using UML
- Covers basic SE, does UML thoroughly, no Java.

You should already have Deitel & Deitel’s Java book.



Why is software engineering still hard?

Easy (or at least routine) projects

small systems (up to c. 100k LOC),

- without hard timescales or budgets,

- without requirement for very high reliability,
- without complex interfaces or legacy |...]
Hard projects

everything else. Many projects have all the above challenges, and
then some.



Statistics

The Standish Chaos reports have since 1994 collated information
from medium to large government and commercial organisations,
classifying their software development projects into

» Succeeded

» Challenged (i.e., delivered something but maybe reduced
scope, late, over budget)

» Failed (i.e., cancelled without delivering anything)

Methodology has been questioned, and NB “hard” projects
overrepresented. Still...



Statistics

The Standish Chaos reports have since 1994 collated information
from medium to large government and commercial organisations,
classifying their software development projects into

» Succeeded
1994: 16% ... 2004: 29% ...?)

» Challenged (i.e., delivered something but maybe reduced
scope, late, over budget)
no real trend, around 50%

» Failed (i.e., cancelled without delivering anything)
1994: 31% ... 2004: 18% ...?7)

Methodology has been questioned, and NB “hard” projects
overrepresented. Still...



The fundamental tension

control « flexibility

Natural tendency to tackle problems of e.g. uncertain
requirements, overruns of time or budget by ever more control or
ceremony. more planning, more documentation, tighter
management...

Recent backlash: agile methods, e.g. Extreme Programming, with
slogans like “Embrace Change”. Deliberately low ceremony.

In this course we try to give you a flavour of both approaches.



Software engineering activities

Syllabus lists:

requirements capture; design; construction; testing,
debugging and maintenance; software process
management.

How these activities are ordered and related depends on the
software development process used.

Let's briefly consider each in turn.



Requirements capture

Identifying what the software must do (not how). Recorded using
mixture of structured text and use case diagrams.

Interesting issues:
» Multiple stakeholders often with different requirements — how
to resolve conflicts?

» Prioritisation. Which requirements should be met in which
release?

» Maintenance: managing changing requirements.

Techniques: use case analysis, viewpoint analysis, rapid
prototyping.



Design

Given that we know what the software must do, how should it do
it?

Higher level than code. Recorded using a modelling language e.g.
UML.

Multiple levels of design:

» architectural design
» high-level design
» detailed design

Interesting issues: understandability (“elegance”); robustness to
(esp. foreseeable) requirement change; security; efficiency; division
of responsibility (“buildability”).

Techniques: introspection, reviews of various kinds, design
patterns, Class-Responsibility-Collaboration (CRC) cards...



Construction

Term intended to be a bit more general than “coding”, to imply
that it includes:

> detailed design (typically, the level that doesn't get written
down)

coding
unit testing
“hygiene” tasks like configuration management

vV v. v Y

developer-targeted documentation

Interesting issues: scale: managing large amounts of detail, esp.
code. Need systems that work when it's not possible for one
person to know everything.

Techniques: use of various tools...



Testing and debugging

Testing happens at multiple levels, from unit tests written before
coding by developer, to customer acceptance testing.

Debugging (here) covers everything from “which line of code
causes that crash?” to “why can’t users work out how to do
that?".

Interesting issues: containing cost — how to test and debug
efficiently; avoiding own-stuff bias — how to see problems in things
you did.

Techniques: lots. .. here, tools e.g. JUnit, use of debugger.



Maintenance

Term used for any post-(major)-release change.

1. corrective maintenance (bugfixing!)

2. perfective maintenance (enhancing existing functionality)
3. adaptive maintenance (coping with a changing world)
4

. preventative maintenance (improving maintainability)
Traditionally viewed as unglamorous but vital. In the “total cost of

ownership” (TCO) of software system, maintenance costs often
dwarf development costs.

Interesting issues: retaining flexibility (avoiding architectural
degradation); when to refactor/rearchitect/retire/replace system

Techniques: refactoring,...



Software process management

Meta-level. How can a group of people carry out all these activities
so as to produce software that customers are happy to pay for?

How should the activities be structured? E.g. all requirements
analysis first, or just enough to do the first bit of design?

Interesting issues: balancing flexibility against controllability,
producing just enough paper; enabling continual improvement of
process.

Techniques: reviews, various kinds of certification, Capability
Maturity Model.



Software engineering discipline

What is a software engineer, as distinct from a programmer?



Software engineering discipline

What is a software engineer, as distinct from a programmer?

E.g. someone who isn't going to be surprised when the customer
turns round and wants something else. Someone who's thought
about/been educated in the wider software engineering issues.



Software engineering discipline

What is a software engineer, as distinct from a programmer?

E.g. someone who isn't going to be surprised when the customer
turns round and wants something else. Someone who's thought
about/been educated in the wider software engineering issues.

Software engineering is a (relatively) young and controversial
discipline.
‘Engineering’: snake-oil, or accurate description?



Software engineering discipline

What is a software engineer, as distinct from a programmer?

E.g. someone who isn't going to be surprised when the customer
turns round and wants something else. Someone who's thought
about/been educated in the wider software engineering issues.

Software engineering is a (relatively) young and controversial
discipline.
‘Engineering’: snake-oil, or accurate description?

What does a software engineer know? What must they be able to
do? IEEE SWEBOK; SE2004 curriculum; etc.



Software engineering discipline

What is a software engineer, as distinct from a programmer?

E.g. someone who isn't going to be surprised when the customer
turns round and wants something else. Someone who's thought
about/been educated in the wider software engineering issues.

Software engineering is a (relatively) young and controversial
discipline.
‘Engineering’: snake-oil, or accurate description?

What does a software engineer know? What must they be able to
do? IEEE SWEBOK; SE2004 curriculum; etc.

Should software engineers be chartered? Should they be legally
required to be?



Reading

Aim: deepen your understanding of what software engineering is
and why the term was invented and is still used, and why problems
still exist.

Suggested: browse the proceedings of the NATO conferences on
Software Engineering (see web page).

Suggested: Somerville Chapter 1 and/or Stevens Chapter 1.

Suggested: google Chaos Standish reports, find e.g.
http://www.infoq.com/articles/
Interview—-Johnson-Standish-CHAQOS

Compulsory: Read the assignments (on web page) — will discuss
next time


http://www.infoq.com/articles/Interview-Johnson-Standish-CHAOS
http://www.infoq.com/articles/Interview-Johnson-Standish-CHAOS

	Introduction to the course
	Overview of the software engineering discipline and activities
	Motivation
	Activities
	Discipline


