Class diagrams and architectural design

Perdita Stevens

School of Informatics
University of Edinburgh

More unified modelling language

We saw use case diagrams, which are part of UML, the Unified
Modelling Language.

(What's that, and why?)
A class diagram crept into last lecture...

Now we look properly at the basic features of class diagrams.

A class

Book

A class as design entity is an example of a model element: the
rectangle and text form an example of a corresponding
presentation element.

UML explicitly separates concerns of actual symbols used vs
meaning.

An object

jo: Customer

This pattern generalises: always show an instance of a classifier
using the same symbol as for the classifier, labelled
instanceName : classifierName.

Classifiers and instances

An aspect of the UML metamodel that it's helpful to understand
up front.

An instance is to a classifier as an object is to a class: instance
and classifier are more general terms.

UML defines many different classifiers. In fact, UseCase and Actor
are classifiers.

Showing attributes and operations

Book

title : String

copiesOnShelf() : Integer
borrow(c:Copy)

Syntax for signature of operations (argument and return types)
adaptable for different PLs. May be omitted

Compartments
We saw the standard:

» a compartment for attributes

» a compartment for operations, below it
They can be suppressed in diagrams.

They are omitted if empty.

You can have extra compartments labelled for other purposes, e.g.,
responsibilities of the class...

Visibility

Book
+ title: String

- copiesOnsShelf() : Integer
borrow(c:Copy)

Can show whether an attribute or operation is

» public (visible from everywhere) with +

» private (visible only from inside objects of this class) with —

(Or protected (#), package (~) or other language dependent
visibility.)

Association between classes

isacopy of
by Book

Copy

This generalises: association between classifiers is always shown
using a plain line. (Recall the associations between actors and use
cases!)

An instance of an association connects objects (e.g. Copy 3 of War
and Peace with War and Peace).

An object diagram contains objects and links: occasionally useful.

Rolenames on associations

Director of DoS directee Student

Studies

Can show the role that one object plays to the other.

Useful when documenting the class: e.g. a class invariant for
DirectorOfStudies could refer to the associated Student objects as
self.directee (a set, if there can be more than one).

Can use visibility notation + — etc on role names too.

Class invariants

A class invariant is a statement which is supposed to be true of
every object of the class, all the time - a “sanity check”.

Very useful to make these explicit. Can be included as comments
on class diagrams, and in code.

May be formal, e.g. x + y = z, or informal, e.g. “the attribute
docstring describes the action of the button in concise English”.

If formal, it can be useful to have class invariants automatically
checked.

Multiplicity of association

Book
1
isacopy of
1.*
LibraryMember borrows/returns Copy
l O .*
0.*
borrows/returns
1

MemberOf Staff borrows/returns Journal
1 0.*

Commas for alternatives, two dots for ranges, * for unknown
number. E.g. each Copy is a copy of exactly one Book; there must
be at least one Copy of every Book.

Navigability

Adding an arrow at the end of an association shows that some
object of the class at one end can access some object of the class

at the other end, e.g. to send a message.

istaking

Student

Module

Crucial to understanding the coupling of the system. NB direction
of navigability has nothing to do with direction in which you read

the association name.

We'll return to this in the context of interactions and interaction

diagrams.

Generalisation

LibraryMember

MemberOf Staff

This generalises: generalisation between classifiers is always shown
using this arrow.

Usually, but not necessarily, corresponds to implementation with
inheritance.

Abstract operations and classes

An operation of a class is abstract if the class provides no
implementation for it: thus, it is only useful if a subclass provides
the implementation.

A class which cannot be instantiated directly — for example,
because it has at least one abstract operation — is also called
abstract.

Can show abstract operation or class using italics for the name,
and/or using the property {abstract}.

Interfaces

In UML an interface is just a collection of operations.

<<interface>> Module

Stringifiable

stringify() : Strin
stringify() : String gify() g

6 Stringifiable

Printer

Simpler diagram: WRITE ONCE

<<interface>> Module
Stringifiable

stringify() : Strin
stringify() : String gify() g

CB Stringifiable

prints

Printer

Many things other than classes can realise interfaces: can use the
lollipop symbol on e.g. components, actors.

|dentifying objects and classes

Simplest and best: look for noun phrases in the system description!

Then abandon things which are:

» redundant > attributes
» outside scope > operations and events
> vague > implementation classes.

(May need to add some back later, especially implementation
classes: point is to avoid incorporating premature design decisions
into your conceptual level model.)

Similarly, can use verb phrases to identify operations.

Architecture

So what is architecture?

Many things to many people.

‘The way that components work together

More precisely, an architectural decision is a decision which affects
how components work together.

Includes decisions about the high level structure of the system —
what you probably first think of as “architecture”.

Pervasive, hence hard to change. Indeed an alternative definition is
“what stays the same” as the system develops and between related
systems (Stuart Anderson).

Classic structural view
Architecture specifies:

» what are the components?
Looked at another way, where shall we put the encapsulation
barriers? Which decisions do we want to hide inside
components, so that we can change them without affecting
the rest of the system?

» what are the connectors?
Looked at another way, how and what do the components
really need to communicate? E.g., what should be in the
interfaces, or what protocol should be used?

The component and connector view of architecture is due to Mary
Shaw and David Garlan — spawned specialist architectural

description languages, and influenced UML2.0, but beyond scope
of this course.

More examples of architectural decisions

» what language and/or component standard are we using?
(C++, Java, CORBA, DCOM, JavaBeans...)
» what conventions do components have about error handling?

» what framework does the product use?

Clean architecture helps get reuse of components.

Indeed by some definitions parts of the architecture can be
components — frameworks, product-line architectures etc.

Reading

Suggested: Browse SEl's collection of architecture definitions at
http:
//www.sei.cmu.edu/architecture/definitions.html

Suggested: (architecture) Somerville ch 11-13

Suggested: (class diagrams) Stevens ch 5.

http://www.sei.cmu.edu/architecture/definitions.html
http://www.sei.cmu.edu/architecture/definitions.html

	UML class diagrams
	Architectural design

