
Sandwiches for everyone

Stratis Viglas

Inf2C :: Computer Systems

Stratis Viglas Sandwiches for everyone

Today’s menu (“And finally, monsieur, a wafer-thin mint”)

Notes on security

Or, why safety is an illusion, why ignorance is bliss, and why
knowledge is power

Stack overflows

Or, why you were doing it wrong in the first assignment

Null pointers

Or, why everyone can be stupid
Kinda like calling a FIFO data structure a stack1

Demos!

Or, another reason why this is likely my last Inf2C lecture

Please, pretty please, with sugar on top

Try it at home, not on DICE (well, not too frequently anyway)

1Your lecturer, 17/11/09, 3:38pm
Stratis Viglas Sandwiches for everyone

Today’s menu (“And finally, monsieur, a wafer-thin mint”)

Notes on security

Or, why safety is an illusion, why ignorance is bliss, and why
knowledge is power

Stack overflows

Or, why you were doing it wrong in the first assignment

Null pointers

Or, why everyone can be stupid
Kinda like calling a FIFO data structure a stack1

Demos!

Or, another reason why this is likely my last Inf2C lecture

Please, pretty please, with sugar on top

Try it at home, not on DICE (well, not too frequently anyway)

1Your lecturer, 17/11/09, 3:38pm
Stratis Viglas Sandwiches for everyone

CPU/OS (Linux) security model

The rings of fire2 (offered by the CPU)

Four rings, zero to three

As usual, one ring rules them all3

ring0 is kernel space, ring3 is user space
ring1 and ring2 are not used by the OS

We need to be in ring0 to be root

We’ll play around with memory locations and we’ll dereference
some null pointers in the process to get into ring0 from ring3

2Johnny Cash � J. R. R. Tolkien
3By the way, I hate Tolkien

Stratis Viglas Sandwiches for everyone

The call/execution stack

You’ve used it in MIPS

And you abused it
You were hacking it without even knowing
This made me happy in a weird way

It all comes down to four calls in x86 assembly

push src: push value in src onto the stack
pop dst: pop from stack and store in dst
call loc: call a function stored in loc and push the return
address onto the stack (i.e., the next value of the program
counter)
ret: return from a function by popping the return address
from stack and jumping to it

The ghost in the machine

By overwriting the stored return address on the top of the stack
before the ret call is issued, we take control of program execution

Stratis Viglas Sandwiches for everyone

The call/execution stack

You’ve used it in MIPS

And you abused it
You were hacking it without even knowing
This made me happy in a weird way

It all comes down to four calls in x86 assembly

push src: push value in src onto the stack
pop dst: pop from stack and store in dst
call loc: call a function stored in loc and push the return
address onto the stack (i.e., the next value of the program
counter)
ret: return from a function by popping the return address
from stack and jumping to it

The ghost in the machine

By overwriting the stored return address on the top of the stack
before the ret call is issued, we take control of program execution

Stratis Viglas Sandwiches for everyone

The call/execution stack

You’ve used it in MIPS

And you abused it
You were hacking it without even knowing
This made me happy in a weird way

It all comes down to four calls in x86 assembly

push src: push value in src onto the stack
pop dst: pop from stack and store in dst
call loc: call a function stored in loc and push the return
address onto the stack (i.e., the next value of the program
counter)
ret: return from a function by popping the return address
from stack and jumping to it

The ghost in the machine

By overwriting the stored return address on the top of the stack
before the ret call is issued, we take control of program execution

Stratis Viglas Sandwiches for everyone

x86 memory management

Before exploiting memory
(mis)management we
need to know how the
CPU and the OS view
memory

Each combination of
architecture and operating
system is different

Though they can all
fail in similar ways

Unused space

memory
addresses

00000000

FFFFFFFF

Heap grows up
(low to high)

Stack grows
down

(high to low)

stack frame

stack frame

Stratis Viglas Sandwiches for everyone

Anatomy of a stack frame

function arguments

return address

base pointer

stack frame pointer

local variables

Oh, exploitable!
The order of allocations
gives way to overflow and
exploits

Function arguments
Address to return to
Base offset of the
program
Base of frame

Local function variables

Stratis Viglas Sandwiches for everyone

Anatomy of a stack frame

function arguments

return address

base pointer

stack frame pointer

local variables

Oh, exploitable!
The order of allocations
gives way to overflow and
exploits

Function arguments
Address to return to
Base offset of the
program
Base of frame
Local function variables

Stratis Viglas Sandwiches for everyone

Anatomy of a stack frame

function arguments

return address

base pointer

stack frame pointer
local variables

(now overflowing into the
return address)

Oh, exploitable!
The order of allocations
gives way to overflow and
exploits

Function arguments
Address to return to
Base offset of the
program
Base of frame
Local function variables

Stratis Viglas Sandwiches for everyone

A recipe for stack overflows and code embedding

1 C code that will cause the overflow (a redirected return from a
function call, or an out-of-bounds strcpy() usually do the trick)

2 Assembly code that will execute once you have overflowed the stack

3 Pass the assembly code through the assembler

4 Link it to pick up any stray library calls

5 Dump the binary to text

6 Copy the text of the binary in the C source file and compile it
disabling the compiler’s stack protection

7 Run it

8 You now control the execution flow

Hacking does not mean the names are more imaginative . . .

The process is usually referred to as shellcoding or stack smashing

Stratis Viglas Sandwiches for everyone

A recipe for stack overflows and code embedding

1 C code that will cause the overflow (a redirected return from a
function call, or an out-of-bounds strcpy() usually do the trick)

2 Assembly code that will execute once you have overflowed the stack

3 Pass the assembly code through the assembler

4 Link it to pick up any stray library calls

5 Dump the binary to text

6 Copy the text of the binary in the C source file and compile it
disabling the compiler’s stack protection

7 Run it

8 You now control the execution flow

Hacking does not mean the names are more imaginative . . .

The process is usually referred to as shellcoding or stack smashing

Stratis Viglas Sandwiches for everyone

The smallest stack overflowing C program (shellcode.c)

char code[] = "Your shellcode here";

int main(int argc , char **argv)

{

int (*func)(); // declare a function

// pointer returning an int

func = (int (*)()) code; // turn the string into

// a function

(int)(* func)(); // call it to smash the stack

// why? because the place we

// jump to is a string

// which we will execute

}

Subliminal message

C/C++ are really the only languages

Stratis Viglas Sandwiches for everyone

Hello world in assembly (hello.asm)

;hello.asm

[SECTION .text]

global _start

_start: jmp short ender

starter: xor eax , eax ;clean up the registers

xor ebx , ebx

xor edx , edx

xor ecx , ecx

mov al, 4 ;syscall write

mov bl, 1 ;stdout is 1

pop ecx ;address of string from stack

mov dl, 5 ;length of the string

int 0x80

xor eax , eax

mov al, 1 ;exit the shellcode

xor ebx ,ebx

int 0x80

ender: call starter ;address of string on stack

db ‘hello’

Stratis Viglas Sandwiches for everyone

Object dump

hello: file format elf32-i386

Disassembly of section .text:

08048060 <_start>:

8048060: eb 19 jmp 804807b <ender>

08048062 <starter>:

8048062: 31 c0 xor %eax,%eax

8048064: 31 db xor %ebx,%ebx

8048066: 31 d2 xor %edx,%edx

8048068: 31 c9 xor %ecx,%ecx

804806a: b0 04 mov 0x4,%al

804806c: b3 01 mov 0x1,%bl

804806e: 59 pop %ecx

804806f: b2 05 mov 0x5,%dl

8048071: cd 80 int 0x80

8048073: 31 c0 xor %eax,%eax

8048075: b0 01 mov 0x1,%al

8048077: 31 db xor %ebx,%ebx

8048079: cd 80 int 0x80

0804807b <ender>:

804807b: e8 e2 ff ff ff call 8048062 <starter>

8048080: 68 65 6c 6c 6f push 0x6f6c6c65

The code

See the funny little hexadecimals? That’s the code that will be executed
once the stack has overflowed. Now, let’s turn this into a string . . .

Stratis Viglas Sandwiches for everyone

(Not so) Beautiful code

char code [] = "\xeb\x19\x31\xc0\x31\xdb\x31\xd2\x31"\

"\xc9\xb0\x04\xb3\x01\x59\xb2\x05\xcd"\

"\x80\x31\xc0\xb0\x01\x31\xdb\xcd\x80"\

"\xe8\xe2\xff\xff\xff\x68\x65\x6c\x6c\x6f";

int main(int argc , char **argv)

{

int (*func)();

func = (int (*)()) code;

(int)(* func)();

}

Stratis Viglas Sandwiches for everyone

Putting it all together

sviglas@munch:~/exploits$ emacs shellcode.c
<clicky clicky clicky>
sviglas@munch:~/exploits$ emacs hello.asm
<clicky clicky clicky>
sviglas@munch:~/exploits$ nasm hello.asm
sviglas@munch:~/exploits$ ld -o hello hello.o
sviglas@munch:~/exploits$ objdump -d hello
<a whole bunch of hexadecimals>
sviglas@munch:~/exploits$ emacs shellcode.c
<clicky clicky clicky>
sviglas@munch:~/exploits$ gcc -fno-stack-protector \

-o shellcode shellcode.c
sviglas@munch:~/exploits$./shellcode
hello

Subliminal message

Use emacs; get finger cramps like all the cool kids do

Stratis Viglas Sandwiches for everyone

The possibilities are endless

Every piece of code you execute uses the stack
So every piece of code you write can cause a stack overflow
You should really stop complaining about the marks of the first
assignment!

What if the code you execute creates a copy of itself?

Remotely, from a socket
Internet worms did exactly that: they smashed the stack and
reproduced

What if it spawns some shell that should be run by root?
Piece of cake if the stack smashing process is owned by root
(e.g., overflowing due to a ridiculously long command line
argument to, say, passwd)
Check the setreuid() documentation
Not so easy in user space, but not insanely hard either

An idea: system call to request from an application that is run
by root (servers are like that) to dynamically load a piece of
code that smashes the stack and in doing so spawns a shell

Stratis Viglas Sandwiches for everyone

The possibilities are endless

Every piece of code you execute uses the stack
So every piece of code you write can cause a stack overflow
You should really stop complaining about the marks of the first
assignment!

What if the code you execute creates a copy of itself?

Remotely, from a socket
Internet worms did exactly that: they smashed the stack and
reproduced

What if it spawns some shell that should be run by root?
Piece of cake if the stack smashing process is owned by root
(e.g., overflowing due to a ridiculously long command line
argument to, say, passwd)
Check the setreuid() documentation
Not so easy in user space, but not insanely hard either

An idea: system call to request from an application that is run
by root (servers are like that) to dynamically load a piece of
code that smashes the stack and in doing so spawns a shell

Stratis Viglas Sandwiches for everyone

The possibilities are endless

Every piece of code you execute uses the stack
So every piece of code you write can cause a stack overflow
You should really stop complaining about the marks of the first
assignment!

What if the code you execute creates a copy of itself?

Remotely, from a socket
Internet worms did exactly that: they smashed the stack and
reproduced

What if it spawns some shell that should be run by root?
Piece of cake if the stack smashing process is owned by root
(e.g., overflowing due to a ridiculously long command line
argument to, say, passwd)
Check the setreuid() documentation
Not so easy in user space, but not insanely hard either

An idea: system call to request from an application that is run
by root (servers are like that) to dynamically load a piece of
code that smashes the stack and in doing so spawns a shell

Stratis Viglas Sandwiches for everyone

Straight from the kernel

static unsigned int tun_chr_poll(struct file *file ,

poll_table * wait)

{

struct tun_file *tfile = file ->private_data;

struct tun_struct *tun = __tun_get(tfile);

struct sock *sk = tun ->sk; // assignment of the pointer

// before test for NULL

unsigned int mask = 0;

if (!tun) return POLLERR; // pointer has already been

// dereferenced; -O3 in gcc

// will take this test out

// make tun ->sk point to 0x00000000 , a valid address

// sk is now under our control , owned by root ,

// and in kernel space

Stratis Viglas Sandwiches for everyone

The recipe

1 Rely on the compiler to “optimise” the code and take out certain NULL

pointer checks

Assignment of a pointer to another pointer if the first pointer is

already known to be not-NULL, makes a check for NULL-ness of the

second pointer obsolete
2 Nullify a pointer by making it point to address zero (this is not a null

pointer, this is a perfectly valid assignment)

3 Create an OS page and populate it with the exploit from user space

Most likely the exploit is /bin/sh

Page needs to be owned by root, so use a root-run service to

dynamically load it (e.g., pulseaudio)

4 Map the page to the pointer’s address

The compiler will not check; it’s a valid pointer

The kernel will not complain; it “owns” the page
5 Assign that value to a kernel-controlled pointer in ring0

Guess what?

You are root

Stratis Viglas Sandwiches for everyone

The recipe

1 Rely on the compiler to “optimise” the code and take out certain NULL

pointer checks

Assignment of a pointer to another pointer if the first pointer is

already known to be not-NULL, makes a check for NULL-ness of the

second pointer obsolete
2 Nullify a pointer by making it point to address zero (this is not a null

pointer, this is a perfectly valid assignment)

3 Create an OS page and populate it with the exploit from user space

Most likely the exploit is /bin/sh

Page needs to be owned by root, so use a root-run service to

dynamically load it (e.g., pulseaudio)

4 Map the page to the pointer’s address

The compiler will not check; it’s a valid pointer

The kernel will not complain; it “owns” the page
5 Assign that value to a kernel-controlled pointer in ring0

Guess what?

You are root

Stratis Viglas Sandwiches for everyone

Further reading

Smashing the stack for fun and profit [Aleph One, Phrack,
1996]

Hacking: the Art of Exploitation [Erickson, No Starch, 2008]

The linux kernel [Torvalds et al., ongoing]

You can do the same things in Windows

Though you don’t have access to the source code so it needs
quite a bit of reverse engineering

Stratis Viglas Sandwiches for everyone

So why do this?

Not for the lulz4, or for great justice5

Do it for the art

Do it because you can

Do it to learn

Don’t do harm

Bottom line

Bugs and “features”: they’re everywhere

Don’t be afraid to try

4http://encyclopediadramatica.com
5All your base are belong to us

Stratis Viglas Sandwiches for everyone

So why do this?

Not for the lulz4, or for great justice5

Do it for the art

Do it because you can

Do it to learn

Don’t do harm

Bottom line

Bugs and “features”: they’re everywhere

Don’t be afraid to try

4http://encyclopediadramatica.com
5All your base are belong to us

Stratis Viglas Sandwiches for everyone

So why do this?

Not for the lulz4, or for great justice5

Do it for the art

Do it because you can

Do it to learn

Don’t do harm

Bottom line

Bugs and “features”: they’re everywhere

Don’t be afraid to try

4http://encyclopediadramatica.com
5All your base are belong to us

Stratis Viglas Sandwiches for everyone

So why do this?

Not for the lulz4, or for great justice5

Do it for the art

Do it because you can

Do it to learn

Don’t do harm

Bottom line

Bugs and “features”: they’re everywhere

Don’t be afraid to try

4http://encyclopediadramatica.com
5All your base are belong to us

Stratis Viglas Sandwiches for everyone

So why do this?

Not for the lulz4, or for great justice5

Do it for the art

Do it because you can

Do it to learn

Don’t do harm

Bottom line

Bugs and “features”: they’re everywhere

Don’t be afraid to try

4http://encyclopediadramatica.com
5All your base are belong to us

Stratis Viglas Sandwiches for everyone

