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Lecture 13: Virtual memory 

  Motivation 
  Overview 
  Address translation 
  Page replacement 
  Fast translation – TLB 
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Motivation 

  Problems: 
–  Where in (physical) memory will the program be located? 

 What happens to the addresses in the program? 
–  How to protect each process’ memory space from the others? 
–  What if the memory is not large enough? 
–  What happens if the memory is upgraded? 

  Solution: Virtual Memory 
–  Decouple the memory visible to the processes from the real 

physical memory in the machine 
–  Transparent translation between the two views of memory 
–  Secondary storage (disk) used as part of the memory hierarchy 
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Virtual Address vs. Physical Address 
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Virtual Memory 

  Processor uses virtual address space 
– PC and other regs all hold virtual addresses 

  Actual physical memory: physical address space 
  Virtual addresses are translated on-the-fly to 

physical addresses 
  Dynamic address translation is done by the 

memory management unit (MMU), a hardware 
unit 
– Before or after accessing the cache 
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Main memory as cache for VM 

  Virtual memory space can be larger than physical memory 
  Secondary storage is used as another level in the memory 

hierarchy 
  Main memory used as a cache for the virtual memory 

–  Only keeps the currently used portions of the process’ code and 
data areas; the rest stays on disk 

–  OS swaps portions of process’ code and data areas in and out of 
memory on demand  

–  This is transparent to the programmer 
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Paging 

  The “cache line” of VM is called a page 
– Plain “page” for virtual memory 
– Page frame for physical memory  

  Typical sizes are 1KB to 16KB 
– Large enough for efficient disk use and to keep 

translation tables small 

  Mapping is done through a per-process page table 
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Dynamic Address Translation 
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Moving pages to/from memory 

  Access to a non-allocated page causes a page-fault 
which invokes the OS through the interrupt mechanism 
–  R(esidence) bit in page table status bits is zero 

  Pages are allocated on demand 
  Pages are replaced and swapped to disk when system 

runs out of free page frames 
–  Priority given to pages not recently used (principle of 

locality): A(ccess) bit in status bits zero (A is set whenever 
process access the page and reset periodically) 

–  If any data in page has been modified the page must be 
written back to disk: M(odified) bit in status bits is one 
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Page replacement 

  Least Recently Used – outlined previously 
– Use past behaviour to predict future 

  FIFO – replace in same order as filled 
–  Simpler to implement 

  Example: page references: 0 2 6 0 7 8 
– Physical memory 4 frames 
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Implementing address translation 

  Page table inefficiencies: 
– Two memory accesses per load and store (1 to get 

the page table entry + 1 to get the data) 
– Page table too large: 

Virtual address: 32 bits 
Physical address: 26 bits 
Pages: 1KB → 10 bits 

4M pages → 4M entries 
16 bits per entry 

8MB of  page table per process! 
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Translation Lookaside Buffer 

  Fast address translation: Translation Lookaside 
Buffer (TLB) contained in the MMU 
–  Small and fast table in hardware, located close to 

processor 
– Can capture most translations due to principle of 

locality 
– One for all processes → must be invalidated on 

context switches 
– When page not in TLB, check page table, and save 

new entry in TLB 
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Associative Memory 
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Translation Lookaside Buffer 
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