
Inf2C (Computer Systems) - 2006-2007 13

Lecture 13: Virtual memory

  Motivation
  Overview
  Address translation
  Page replacement
  Fast translation – TLB

Inf2C (Computer Systems) - 2006-2007 14

Motivation

  Problems:
–  Where in (physical) memory will the program be located?

 What happens to the addresses in the program?
–  How to protect each process’ memory space from the others?
–  What if the memory is not large enough?
–  What happens if the memory is upgraded?

  Solution: Virtual Memory
–  Decouple the memory visible to the processes from the real

physical memory in the machine
–  Transparent translation between the two views of memory
–  Secondary storage (disk) used as part of the memory hierarchy

Inf2C (Computer Systems) - 2006-2007 15

Virtual Address vs. Physical Address

Virtual Address Space
0

232-1

212

Physical Memory

A

B

C

D

A

B

C

D Disk

0

224-1

Hardware/OS

OS VM
manager

Inf2C (Computer Systems) - 2006-2007 16

Virtual Memory

  Processor uses virtual address space
– PC and other regs all hold virtual addresses

  Actual physical memory: physical address space
  Virtual addresses are translated on-the-fly to

physical addresses
  Dynamic address translation is done by the

memory management unit (MMU), a hardware
unit
– Before or after accessing the cache

Inf2C (Computer Systems) - 2006-2007 17

Main memory as cache for VM

  Virtual memory space can be larger than physical memory
  Secondary storage is used as another level in the memory

hierarchy
  Main memory used as a cache for the virtual memory

–  Only keeps the currently used portions of the process’ code and
data areas; the rest stays on disk

–  OS swaps portions of process’ code and data areas in and out of
memory on demand

–  This is transparent to the programmer

Inf2C (Computer Systems) - 2006-2007 18

Paging

  The “cache line” of VM is called a page
– Plain “page” for virtual memory
– Page frame for physical memory

  Typical sizes are 1KB to 16KB
– Large enough for efficient disk use and to keep

translation tables small

  Mapping is done through a per-process page table

Inf2C (Computer Systems) - 2006-2007 19

Dynamic Address Translation
virtual address: 32 bits

D P

page number
(22 bits ⇒ 4M pages)

page offset
(10 bits ⇒ 1KB)

D

physical address: 26 bits
(64MB of memory)

F

page table:
• per process
• one entry per page (e.g. 4M)
• located in the system
 portion of main memory

F

frame number

status
bits

+

page table base address (physical)

translation

Inf2C (Computer Systems) - 2006-2007 20

Moving pages to/from memory

  Access to a non-allocated page causes a page-fault
which invokes the OS through the interrupt mechanism
–  R(esidence) bit in page table status bits is zero

  Pages are allocated on demand
  Pages are replaced and swapped to disk when system

runs out of free page frames
–  Priority given to pages not recently used (principle of

locality): A(ccess) bit in status bits zero (A is set whenever
process access the page and reset periodically)

–  If any data in page has been modified the page must be
written back to disk: M(odified) bit in status bits is one

Inf2C (Computer Systems) - 2006-2007 21

Page replacement

  Least Recently Used – outlined previously
– Use past behaviour to predict future

  FIFO – replace in same order as filled
–  Simpler to implement

  Example: page references: 0 2 6 0 7 8
– Physical memory 4 frames

0

2

6

7

8

0 0

2

6

7

0
LRU FIFO

8

Inf2C (Computer Systems) - 2006-2007 22

Implementing address translation

  Page table inefficiencies:
– Two memory accesses per load and store (1 to get

the page table entry + 1 to get the data)
– Page table too large:

Virtual address: 32 bits
Physical address: 26 bits
Pages: 1KB → 10 bits

4M pages → 4M entries
16 bits per entry

8MB of page table per process!

Inf2C (Computer Systems) - 2006-2007 23

Translation Lookaside Buffer

  Fast address translation: Translation Lookaside
Buffer (TLB) contained in the MMU
–  Small and fast table in hardware, located close to

processor
– Can capture most translations due to principle of

locality
– One for all processes → must be invalidated on

context switches
– When page not in TLB, check page table, and save

new entry in TLB

Inf2C (Computer Systems) - 2006-2007 24

Associative Memory

  Ordinary memory

data addr

addr

• addr has a single
possible location
in memory

data addr

addr

• addr can be in any
of several locations
in memory
• “search” is usually
done by a parallel
match
• addr is normally
called tag

match

search

  Associative memory

addr+1

addr2

Inf2C (Computer Systems) - 2006-2007 25

Translation Lookaside Buffer

F P SB

search
for a
match

P from
Virtual address

F for
Physical address

TLB: 16 to 32 entries

F=frame number
P=page number
SB=status bits

