
Inf2C (Computer Systems) - 2006-2007 13

Lecture 13: Virtual memory

  Motivation
  Overview
  Address translation
  Page replacement
  Fast translation – TLB

Inf2C (Computer Systems) - 2006-2007 14

Motivation

  Problems:
–  Where in (physical) memory will the program be located?

 What happens to the addresses in the program?
–  How to protect each process’ memory space from the others?
–  What if the memory is not large enough?
–  What happens if the memory is upgraded?

  Solution: Virtual Memory
–  Decouple the memory visible to the processes from the real

physical memory in the machine
–  Transparent translation between the two views of memory
–  Secondary storage (disk) used as part of the memory hierarchy

Inf2C (Computer Systems) - 2006-2007 15

Virtual Address vs. Physical Address

Virtual Address Space
0

232-1

212

Physical Memory

A

B

C

D

A

B

C

D Disk

0

224-1

Hardware/OS

OS VM
manager

Inf2C (Computer Systems) - 2006-2007 16

Virtual Memory

  Processor uses virtual address space
– PC and other regs all hold virtual addresses

  Actual physical memory: physical address space
  Virtual addresses are translated on-the-fly to

physical addresses
  Dynamic address translation is done by the

memory management unit (MMU), a hardware
unit
– Before or after accessing the cache

Inf2C (Computer Systems) - 2006-2007 17

Main memory as cache for VM

  Virtual memory space can be larger than physical memory
  Secondary storage is used as another level in the memory

hierarchy
  Main memory used as a cache for the virtual memory

–  Only keeps the currently used portions of the process’ code and
data areas; the rest stays on disk

–  OS swaps portions of process’ code and data areas in and out of
memory on demand

–  This is transparent to the programmer

Inf2C (Computer Systems) - 2006-2007 18

Paging

  The “cache line” of VM is called a page
– Plain “page” for virtual memory
– Page frame for physical memory

  Typical sizes are 1KB to 16KB
– Large enough for efficient disk use and to keep

translation tables small

  Mapping is done through a per-process page table

Inf2C (Computer Systems) - 2006-2007 19

Dynamic Address Translation
virtual address: 32 bits

D P

page number
(22 bits ⇒ 4M pages)

page offset
(10 bits ⇒ 1KB)

D

physical address: 26 bits
(64MB of memory)

F

page table:
• per process
• one entry per page (e.g. 4M)
• located in the system
 portion of main memory

F

frame number

status
bits

+

page table base address (physical)

translation

Inf2C (Computer Systems) - 2006-2007 20

Moving pages to/from memory

  Access to a non-allocated page causes a page-fault
which invokes the OS through the interrupt mechanism
–  R(esidence) bit in page table status bits is zero

  Pages are allocated on demand
  Pages are replaced and swapped to disk when system

runs out of free page frames
–  Priority given to pages not recently used (principle of

locality): A(ccess) bit in status bits zero (A is set whenever
process access the page and reset periodically)

–  If any data in page has been modified the page must be
written back to disk: M(odified) bit in status bits is one

Inf2C (Computer Systems) - 2006-2007 21

Page replacement

  Least Recently Used – outlined previously
– Use past behaviour to predict future

  FIFO – replace in same order as filled
–  Simpler to implement

  Example: page references: 0 2 6 0 7 8
– Physical memory 4 frames

0

2

6

7

8

0 0

2

6

7

0
LRU FIFO

8

Inf2C (Computer Systems) - 2006-2007 22

Implementing address translation

  Page table inefficiencies:
– Two memory accesses per load and store (1 to get

the page table entry + 1 to get the data)
– Page table too large:

Virtual address: 32 bits
Physical address: 26 bits
Pages: 1KB → 10 bits

4M pages → 4M entries
16 bits per entry

8MB of page table per process!

Inf2C (Computer Systems) - 2006-2007 23

Translation Lookaside Buffer

  Fast address translation: Translation Lookaside
Buffer (TLB) contained in the MMU
–  Small and fast table in hardware, located close to

processor
– Can capture most translations due to principle of

locality
– One for all processes → must be invalidated on

context switches
– When page not in TLB, check page table, and save

new entry in TLB

Inf2C (Computer Systems) - 2006-2007 24

Associative Memory

  Ordinary memory

data addr

addr

• addr has a single
possible location
in memory

data addr

addr

• addr can be in any
of several locations
in memory
• “search” is usually
done by a parallel
match
• addr is normally
called tag

match

search

  Associative memory

addr+1

addr2

Inf2C (Computer Systems) - 2006-2007 25

Translation Lookaside Buffer

F P SB

search
for a
match

P from
Virtual address

F for
Physical address

TLB: 16 to 32 entries

F=frame number
P=page number
SB=status bits

