
Chapter VII

Exceptions and processor management

VII.1 Exceptions

The control transfer instructions are used for jumps and branches within a user
program. Computer processors also need to support another kind of control
transfer. For example, a network interface in the computer may receive data
from the attached network, and this may require operating system code to run to
deal with the incoming data and perhaps set up a response. We don’t want every
user program to have to keep checking all the I/O systems to see if any of them
needs attention, so we need some way for a user’s program to be interrupted so
that operating system code can run when needed.

An unusual event which causes a break in the normal flow of execution of a
user’s program is called an exception. CPUs provide a hardware exception mech-
anism which allows the running code to be interrupted, and operating system
code to run instead. Once the cause of the exception has been dealt with, control
can return to the interrupted code. Note this is not at all the same thing as what
happens when a Java program throws what Java calls an exception. In Java, an
exception is a software mechanism supported by the Java virtual machine. The
exception mechanism we are discussing here is a hardware mechanism in the
CPU.

There are two distinguishable kinds of hardware exception, external excep-
tions, which are generated externally to the CPU/memory system, in the I/O
systems, and internal exceptions, generated inside the CPU or memory system.

Internal exceptions are generated internally to the CPU. Internal exceptions Internal exceptions

are sometimes called traps, and they indicate some kind of error or fault. Exam-
ples include:

• The program tried to execute an illegal or unknown instruction.

• Arithmetic overflow occurred.

The causes of external exceptions, often called interrupts, include: External exceptions

• An I/O subsystem needs the processor’s attention.

• The timeslice timer has timed out — this is used in a multitasking system
to interrupt a user program to allow other user programs to run for a
while.

49

50 Exceptions and processor management [Chapter VII

In all these cases, we need to interrupt the running program. In some cases
the exception is fatal to the program — there is no point in returning to a pro-
gram that has tried to execute an illegal instruction, for example — and the op-
erating system will terminate the program. In the case of arithmetic overflow,
we may want to resume the interrupted program, and in the case of a memory
fault, the operating system may be able to fix the problem and then return to
the interrupted program. (More on this later in the course.)

VII.1.1 Exception handling

A signal from the I/O subsystem, timer, memory system etc., called an inter-
rupt request, indicates that attention from the operating system is needed. This
signal is checked by the processor control at the end of each instruction, and if it
is asserted, then instead of fetching and executing the next instruction in the nor-
mal way, the processor executes exception processing steps. These involve saving
the Program Counter in a safe place, so we can return to the interrupted code
once the interrupt has been dealt with, and then setting the Program Counter to
a known address – the address of the entry point of the interrupt handler code,
which is part of the operating system.

When an exception occurs in a MIPS processor, the PC is saved in a special
processor register called the Exception Program Counter (EPC), and the PC is
then loaded with the value 0x800001801, which is the address where the inter-
rupt handler starts. At the end of the interrupt handler code, we jump to the
address in the EPC, to return to the interrupted program where we left off.

The interrupt handler will undoubtedly want to use some of the processor
registers while it is dealing with the interrupt, but because an interrupt can hap-
pen between any two instructions in a user’s program, it is vital that none of the
registers have been changed when we return from the interrupt handler to the
user’s code. Therefore the first thing the interrupt handler does is to save the
contents of any registers it will be using into a safe place in memory, and the last
thing it does before returning is to restore those register values. This process is
quite similar to a function call, but no registers can be modified.

The interrupt handler needs some way to find out what caused the interrupt:
was it the disk controller, or the timer, for example? The MIPS processorCause register

actually has six interrupt request signals — asserting any of them will cause the
processor to deal with the interrupt as described above, and each of these signals
can be supplied by a different I/O controller. The interrupt handler can find
out which interrupt request signal caused the interrupt by looking in another
special processor register, called the Cause register.

1Note that SPIM uses 0x80000080.

§ VII.1] Exceptions 51

After an interrupt is requested, and the CPU starts fetching instructions at Interrupt masking

the entry point of the interrupt handler, the interrupt request signal from the
I/O controller will still be asserted — the I/O controller does not yet know that
the CPU has started dealing with the interrupt. What we don’t want is for the
CPU to recognise the interrupt request again after executing the first instruc-
tion of the interrupt handler, and to interrupt the interrupt handler. To avoid
this, the interrupt request signal is automatically masked when the interrupt is
recognised. This involves setting a bit in another special CPU register, the Sta- Status register

tus register, known as the Exception Level (EXL) bit. While this bit is set (1), the
interrupt request signal has no effect.

By the end of the interrupt handler code, the interrupting I/O controller
will have de-asserted its interrupt request signal, having had its needs dealt with.
When control returns to the interrupted program therefore, the EXL bit is
cleared again, so that subsequent interrupt request signals will be recognised.

The three extra processor registers introduced, the EPC, Cause and Status
registers, can be accessed using instructions that allow their contents to be trans-
ferred to or from the 31 general purpose MIPS registers. The return from the
interrupt handler to the interrupted program is implemented by transferring the
EPC contents to the PC. A special MIPS instruction, eret (exception return),
handles the return to the interrupted program.

Exceptions are in reality much more complicated than presented above. Sec-
tion 7 of appendix A of the course textbook (P&H) provides some more details,
but for course examination purposes the above simplified procedure suffices.

Some processors use an alternative way to handle exceptions compared to
the one described above. When an exception happens, the processor starts Vectored interrupts

fetching instructions from an address which specifically corresponds to the type
of exception. This method is called vectored interrupts and a Cause register is
not needed since there are separate exception handlers for each exception.

VII.1.2 Software exceptions

The exceptions described above are hardware exceptions. However, most
processors also allow the exception mechanism to be invoked by an instruction.
In the MIPS, the syscall instruction, short for system call, causes exactly the
same sequence of steps as a hardware exception. The interrupt handler can tell
that the exception was caused by a syscall instruction by looking at the Cause
register.

The name of the syscall instruction gives away its purpose – it is the way
that user programs make calls to operating system functions. There is a whole
range of functions that the operating system provides for user programs, for
example: performing I/O, allocating more memory to the program, communi-

52 Exceptions and processor management [Chapter VII

cating with another program, terminating this program etc., but there is only
one syscall instruction. The user program indicates which system service it
is requesting by placing system call parameters in specified general purpose pro-
cessor registers before executing the syscall instruction. The interrupt han-
dler discovers from the Cause register that the exception was caused by a system
call, and then uses the supplied parameters to determine which operating system
function is being invoked. After executing that function, returning from the in-
terrupt handler in the usual way returns control to to the user program at the
instruction after the syscall.

VII.2 Kernel and user mode protection mechanism

Why access operating system functions via the exception mechanism, instead
of calling them in the same way that a program calls one of its own methods, i.e.
with a jump and link instruction? The answer lies in the dual mode protection
mechanism that the all modern processors provide. The CPU has two distinct
modes of operation: user mode, which is the mode in which user programs
execute, and kernel mode (also called system or supervisor mode), which is the
mode in which the operating system executes. Which of these modes the CPU
is in is determined by a bit in the CPU Status register.

Some CPU instructions are privileged, and will only work in kernel mode.
These include instructions for accessing I/O systems, and instructions that alter
the processor Status register, including the kernel/user mode bit. Any attempt
to execute a privileged instruction while in user mode will cause an internal
exception and thus call the operating system, which can terminate the offending
program.

Since the exception mechanism involves control passing to part of the oper-
ating system, the kernel/user mode bit is automatically set to kernel mode when
an exception is recognised, so that the interrupt handler runs in kernel mode.
The eret instruction executed at the end of the interrupt handler switches the
mode back to what it was before the exception. An exception is the only way
that the mode can switch from user to kernel mode, and this is why a user pro-
gram calls operating system functions using a syscall instruction, not an ordi-
nary jump and link instruction, which would leave the processor in user mode.

Entering the operating system via a syscall instruction also has the advan-
tage that the operating system can only be entered from user programs at one
fixed entry point: the interrupt handler entry point (0x80000180 in the MIPS).
User programs cannot jump into any other part of the operating system. This
can be enforced by the memory protection mechanism described later in the
course.

§ VII.3] Processor management 53

VII.3 Processor management

Multi-tasking systems share the processor between several processes resident
in memory at the same time, by switching execution between the processes2,
under control of the operating system. This idea was originally developed to
keep the processor busy while a process is unable to proceed because it is waiting
for input or output from/to a relatively slow I/O device:

Process running Waiting for I/O Process running

MULTI−TASKING SYSTEM

SINGLE TASK SYSTEM

System call to request I/O I/O completion

Process n runningProcess 1 running Process 2 running

OS Interrupt handlerOS System Call handler

I/O controller interrupts
to signal I/O complete

System call to request I/O

Process 1 requests an I/O operation by executing a system call, which is
handled by a part of the operating system. Rather than waiting for the I/O
to complete, then returning to process 1 (upper line in diagram), the OS starts
another process running (lower line). When the I/O completes, the I/O con-
troller hardware generates an interrupt, which causes an interrupt handler in
the OS to run, to deal with the completion of the I/O operation. Process 1 may
now be restarted, or, alternatively, process 2 or some other process resident in
the memory of the machine may run next.

While it is waiting for its I/O request to complete, process 1 is said to be
blocked — it cannot run further for the time being. A process which is not
currently running, but which is able to run immediately, is said to be ready. The
operating system maintains lists of processes which are ready, and of those that
are blocked, with an indication of the event (e.g. I/O completion) which each of
the latter is waiting for.

The operating system is always entered via some kind of exception (a sys-
tem call, an I/O interrupt or an internal exception) — remember that this sets
the processor into kernel mode. It then runs for a short time to deal with the

2A process is a program in execution.

54 Exceptions and processor management [Chapter VII

exception, and then starts one of the ready processes running. The part of the
operating system which decides which ready process to run next is often called
the dispatcher, and it must ensure a reasonably fair division of processor time.

Each process moves between three different states: ready, blocked and run-
ning:

READY BLOCKED

RUNNING

I/O COMPLETION

DISPATCH

TIMEOUT (via system call)
I/O REQUEST

In order to prevent a process which makes no I/O requests and does not
generate any kind of internal exception, from hogging the processor, a timer
is set up to interrupt the processor after a process has run for a certain length
of time (its timeslice), so that another process may be dispatched. Operating
systems which support this feature are called pre-emptive multi-tasking systems
and their dispatcher includes the state transition labelled timeout in the figure.

The switching of execution from one process to another, for any reason, is
known as a context switch – the context of a process is its complete state (i.e.
the contents of its data areas and of the processor registers, including the pro-
gram counter, while it is running). When an interrupt occurs, the context of the
interrupted process must be saved, so that the process can be dispatched again
later. The process’s data in memory will not get altered between the interrup-
tion of the process and its next dispatch, as we will assume that no other process
will access this process’s memory space. However the processor registers will
obviously be used by other processes in the meantime, so their contents must
be saved. The interrupt handler must copy them into a save area (unique to the
interrupted process) in system memory, so that the dispatcher may dispatch a
different process by loading its saved register contents into the processor regis-
ters and executing a return from exception. The registers are saved in an area of
system memory known as the process control block (PCB).

§ VII.3] Processor management 55

There is one PCB per process in the computer, and it holds all the infor-
mation the OS requires to manage the process, including: process ID, process
state information (blocked, ready, etc.), the saved processor register contents,
information on the process’s priority, information about which parts of the
machine’s memory the process is using, information about the I/O resources
allocated to the process (e.g. serial port, tape drive, etc.)

VII.3.1 Creating and Destroying Processes

When a multi-tasking system is started, a number of processes are created,
including for example a login process, which outputs a login prompt on the
screen and waits for a username to be typed. Processes may, by using an oper-
ating system call, request the creation of new processes. For example, when the
user runs a program in a shell window, the shell process must not be lost, as the
user will want to resume using the shell when the new program terminates. The
shell process requests the creation of a new process in which the new program
will be run. If the OS decides there is ‘room’ in the machine, it creates a new
PCB, and allocates resources to the new process.

The OS keeps track of the relationship between the new process and the
process which requested its creation – they are known respectively as child and
parent. The creation of a child process is often called spawning a new process.
Processes may be destroyed at their own request or at the request of some other
process, and this involves freeing the process’s resources and deleting its PCB.

VII.3.2 The operating system kernel

The parts of the operating system which execute as a result of exceptions and
system calls need to be short and efficient (so that user processes get to execute
as much as possible of the time, and interrupts are not disabled for too long).
These sections of code reside in a reserved memory space, and are known as the
kernel or nucleus of the operating system.

Typical kernel functions include:
• Interrupt handling.

• Process creation and destruction.

• Process state switching.

• Memory management (covered later in the course).

• Inter-process communication and synchronisation.

• I/O support.

56 Exceptions and processor management [Chapter VII

