Chapter VI

Processor design

VI.1 Single cycle processors

There are no notes for this section as the material is fully covered by the P&H text-
book in sections 5.1 - 5.4 of the 3rd edition or sections 5.1 - 5.3 of the 2nd.

V1.2 Multi-cycle processors

There are no notes for this section as the material is fully covered by the P&H text-
book in section 5.5 of the 3rd edition or section 5.4 of the 2nd.

V1.3 Introduction to pipelining

Let’s assume for now that all processor instructions require exactly the same
number of cycles to execute and go through exactly the same processing steps.
We could then speed up the execution by overlapping the execution of several
instructions, so that, at any point, only one instruction is at a particular ex-
ecution stage. The implementation technique which achieves this instruction
overlapping is called pipelining.

cycle:
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

instruction:

w | IF [Rec [ALU [MEM] wB

w IF | Rec [ALU [mEM | wB

w IF | ReG [ALU [MEM [wB |
w [1F [ReEc [ALU [MEM][wB

Iw IF | REG | ALU | MEM | WB Pipelined execution

w IF_| REG | ALU [MEM | wB |

Figure VI.1: Comparison of simple multi-cycle and pipelined execution.

Figure [VI.1 shows the way we commonly depict pipelined execution and
how the execution time of a program is affected. It is interesting to observe
that the execution of a single instruction is taking the same amount of clock
cycles as before. Pipelining only speeds up sequences of instructions and, as an
instruction is completed at every cycle, the Cycles Per Instruction (CPI) metric
of the processor becomes equal to one. Luckily real programs execute billions

43

Pipeline hazards

44 Processor design [Chapter VI

of instructions, so we can take full advantage of the pipeline speedup. Assuming
that all stages take about the same amount of time, the speed-up achieved is roughly
equal to the number of stages.

As we have already seen, different instructions require somewhat different
processing steps and complete in a different number of cycles. So the important
question is: can they be pipelined? The answer is positive, because we can always
stretch the execution of some instruction types so that they all take the same
number of cycles. These instructions do not do useful work at all stages, but
this is not a problem. For example, we can force R-type arithmetic instructions
to pass through a memory access stage — doing nothing — before they write
their result back to the destination register.

A pipelined MIPS processor can therefore be pipelined into five, classic,
stages:

IF Instruction fetch and calculation of the next PC
REG Instruction decode and register fetch

ALU ALU operation

MEM Data memory access
WB Write back the result into the register file

The above have depicted pipelining as a panacea. In practise, the average CPI
achieved by pipelining is considerably more than 1, because of complications
known as pipeline hazards, of which there are three varieties: structural hazards,
data hazards and control hazards.

VI1.3.1 Structural hazards

Structural hazards arise when two stages of the pipeline share a hardware re-
source. Problems can then arise if the two different instructions in those pipeline
stages both want to use that resource at the same time. For example, the register
bank is used by both the REG stage and the WB stage. This is not a problem
however, as the register bank has two read ports and one write port, which can
all operate simultaneously. The REG stage can read two register values in the
same clock cycle as the WB stage writes one register value.

Accessing the memory is more of a potential problem. The IF stage fetches
instructions from the memory, while the MEM stage reads or writes data words.
If the memory can only support one read or write per clock cycle, which is usu-
ally the case, the pipeline cannot operate at full efficiency. When a load or store
instruction is in the MEM stage, reading or writing memory, the IF stage would

§ VIL.3] Introduction to pipelining 45

not be able to fetch an instruction, resulting in a pipeline stall in the IF stage.
A pipeline bubble would pass through the pipeline as a result (see figure [VI.2).
Pipeline stages are doing no useful work as the bubble passes through them.

cycle:
1 2 3 4 5 6 7 8 9 10 11 12
instruction:
Iw IF REG | ALU | MEM | WB
add IF REG | ALU | MEM | WB
add IF REG | ALU | MEM | WB
|

<all bubble! ' bubble' ' bubble'
SwW IF REG | ALU | MEM | WB
Iw IF REG | ALU | MEM | WB
sub IF REG | ALU | MEM | WB o

\bubble’ bubble! | bubble!

I ,,,,, b a

Cannot fetch an instruction in these cycles /

because stage MEM s accessing memory
Figure VI.2: Pipeline bubbles caused by structural hazard.

There is a straightforward solution to this however: use two memories!. The
IF pipeline stage reads from the instruction memory, and the MEM stage reads
or writes from/to the data memory, and both can be accessed in the same clock
cycle.

In general, structural hazards can be solved by using more hardware. The
task of the architect is to determine how frequently a hazard can occur in order
to justify or not the cost of adding the extra hardware.

VI1.3.2 Data hazards

Data hazards arise because instructions in a program are not independent.
The data written into a register by one instruction is often read from the regis-
ter by a closely following instruction. There is a data dependency between the
instructions. For example, in the following sequence of instructions:
1w $t0, 0($t4)
1w $t1, 4($t4)
add $t3, $t2, $t1

the add instruction reads from $t1 the value written into it by the immediately
preceding 1w instruction. A data hazard arises in the pipeline because when
the add instruction reaches pipeline stage REG and wants to read register $t1,
the immediately preceding 1w instruction has just reached pipeline stage ALU,

!In reality two memory caches are used. Caches are described in later lectures.

46 Processor design [Chapter VI

therefore it has not yet read the word from the memory. In order for the pro-
gram to execute correctly, the add instruction must stall in stage REG of the
pipeline for three clock cycles, while the 1w instruction works through stages
ALU, MEM and WB. For those three clock cycles, no more instructions can be
fetched and the result is a three stage bubble in the pipeline (fig/VL.3).

cycle:
1 2 3 4 5 6 7 8 9 10 11 12 13
instruction:
add $10, $t4, $t2 | IF | REG [ALU [MEM | wB
Iw $t1, 4($t4) IF REG | ALU | MEM | WB
"7’7\
add $t3, $t2, $t1 IF /,,,L,,,,L,,,,;,,,,L,,,,‘
| ! |
D S N S
add cannot proceed to REG stage R | . | !
because $t1 is not updated yet : REG | ALU | MEM | wB
sw IF REG | ALU | MEM | WB
w IF REG | ALU | MEM | WB
sub IF REG | ALU | MEM | WB

Figure VI.3: Data hazard.

The pipelined processor needs to incorporate special control logic to detect
data dependencies between instructions and stall the pipeline for the necessary
number of cycles.

Data hazards are very difficult to avoid. The compiler can attempt to order
instructions so that instructions that read registers are placed as far as possible
after the ones that load up those registers (as far as is possible without changing
the effect of the program, of course). In the example above, if the two first in-
structions were swapped round, the pipeline would only need to stall for two
clock cycles, because the 1w instruction that loads register $t1 would already be
arriving in stage MEM when the add instruction arrives in stage REG. Because
programs do so many operations on data, there are a lot of data dependencies be-
tween close instructions, and this reordering by the compiler is not particularly
effective at reducing pipeline stalls.

There are ways of reducing the length of pipeline stalls caused by data depen-
dencies between instructions, by adding more complex hardware, but they are
beyond the scope of the Inf2C course.

VI.3.3 Control hazards

Control hazards are caused by branch instructions. A conditional branch in-
struction, beq $t1, $t2, offset (which compares registers $t1 and $t2, and
if they are equal adds offset to the PC to do a branch), would do the following
in each pipeline stage:

§ VIL.3] Introduction to pipelining 47

pipeline stage operation

IF Fetch the instruction and increment PC by 4

REG Get the values of $t1 and $t2 from the registers

ALU Calculate $t1-$t2 and also PC+offset

MEM If the result of $t1-$t2 was zero, update the PC
with the result of PC+offset

WB Do nothing (no result to write back)

(Note that in stage ALU, two calculations are done at once, so that stage
of the datapath pipeline will need to contain two ALUs. Also, the operation
in stage MEM here does not involve an access to memory.) The control haz-
ard arises because the beq instruction does not update the program counter,
if the branch is taken, until the instruction is in stage MEM. Normally, by the
time an instruction reaches stage MEM, three subsequent instructions have been
fetched, and are in stages ALU, REG and IF. But the processor must stop fetch-
ing instructions as soon as it fetches a conditional branch instruction into IF,
because it does not know where to fetch the next instruction from — it does not
yet know whether the branch will be taken or not. Instruction fetching must
stall until the branch instruction completes stage MEM, at which point the PC
is updated if the branch is taken. The result is a three stage bubble in the pipeline
after each conditional branch instruction (fig VI1.4).

cycle:
1 2 3 4 5 6 7 8 9 10 1 12
instruction:
beq | IF |REG|ALU |[MEM| wB |
SO S A
77777 R I
S ey
L7777: | | | |
add IF | REG [ALU [MEM | wB
sw IF | REG [ALU [MEM | wB
Iw IF | ReG [ALU [MEM | wB
sub IF | ReG [ALU [MEM]| wB

Instruction fetching must stop after the beq is fetched
until the beg completesin stage MEM,
which will update the PC if the branch is taken

Figure VI.4: Control hazard.

Again, there are ways of reducing the performance penalty caused by
branches, by adding more complex hardware. The basic idea here is for the
IF hardware to predict whether the branch will be taken or not, and then to
carry on fetching instructions from the predicted place. If the prediction turns
out to be right, no bubble occurs in the pipeline. If the prediction turns out
to be wrong, the wrongly fetched instructions already in the pipeline must be

48 Processor design [Chapter VI

discarded and new instructions fetched, causing a pipeline bubble, and a corre-
sponding performance penalty.

VI.3.4 Summary

The effect of data and control hazards is that the average CPI for a pipelined
processor is considerably greater than 1, even with complex extra hardware to
minimise the number and length of stalls. There are ways of reducing the average
CPI yet further, increasing processor performance, by adding more hardware.
One is to have the IF stage fetch more than one instruction per clock cycle,
and then feed these into several execution pipelines operating in parallel (this
arrangement is known as a superscalar processor design). Another is to allow the
hardware to reorder instructions, i.e. to execute the instructions in a different
order to the order in which they were fetched. These methods are covered in
more detail in the CS3 Computer Architecture course.

