
Inf2C (Computer Systems) - 2009-2010 1

Lectures 5-6: Introduction to C

  Motivation:
– C is both a high and a low-level language
– Very useful for systems programming
– Faster than Java

  This intro assumes knowledge of Java
– Focus is on differences
– Most of the syntax is the same
– Most statements, expressions are the same

Inf2C (Computer Systems) - 2009-2010 2

Outline

  Major differences with Java
  A simple program; how to compile and run
  Data-types and variables
  The preprocessor
  Composite data structures
  Arrays and strings
  Pointers

Inf2C (Computer Systems) - 2009-2010 3

Major differences with Java

  C is not object oriented
– C programs are collections of functions, the

equivalent of Java methods
– Execution starts from function main

  C is not interpreted
– A C program is compiled into an executable

machine code program, which runs directly on the
processor

–  Java programs are compiled into a byte code, which
is read and executed by the Java interpreter, another
program

Inf2C (Computer Systems) - 2009-2010 4

C is less “safe”

  Run-time errors are not ‘caught’ in C
– The Java interpreter catches these errors before they

are executed by the processor
– C run-time errors happen for real and the program

crashes

  The C compiler trusts the programmer!
– Many mistakes go un-noticed, causing run-time

errors

Inf2C (Computer Systems) - 2009-2010 5

Memory management is different

  Java uses dynamic memory management for all
objects
– E.g. arrays can change size while program runs
– Memory space is released automatically by garbage

collection

  C data structures are allocated statically, i.e.
before execution starts
– The programmer must write extra code to manage

dynamically-changing data structures
– Memory space released explicitly

Inf2C (Computer Systems) - 2009-2010 6

C has pointers …

  Pointers are special variables that reference (or
point to) another variable
–  Similar to Java references

  We have already seen pointers in assembly:
lw $t1,0($s2)

–  $s2 is a pointer
– C pointers are the same thing! (more later)

Inf2C (Computer Systems) - 2009-2010 7

The hello world program

Linux/DICE shell commands
Compile: gcc hello.c Run: ./a.out

#include<stdio.h>

/* This is a (multi-line)

 comment */

int main(void)

{ // This is a comment too

 printf("Hello world!\n");

 return 0;

}

Inf2C (Computer Systems) - 2009-2010 8

Built-in data types

  The usual basic data types are there:
char 8 bits
short 16
int 16, 32, 64 (same as machine word size)
long 32, 64
float 32

  Bit sizes are machine dependent
– Unlike Java where an int is always 32 bits

  Normally signed, unsigned available too
  No boolean type exists

–  for any number (int, char,…): 0 false, other true

Inf2C (Computer Systems) - 2009-2010 9

Categories of variables

  Global variables
– Declared outside a function
– Accessible by any function in the same file
– Accessible in other files if declared external in

those files
– Declare static to hide from other files

  Local variables
– Declared inside a function (before the statements)
– Not available outside function
– Different calls of the same function have separate

variables

Inf2C (Computer Systems) - 2009-2010 10

The C pre-processor: cpp

  Includes – imports header files
– Declarations for variables, functions, …

  Text substitution, e.g. define constants
#define NAME value

  Macros (inline functions)
#define MAX(X,Y) (X>Y? X:Y)

  Conditional compilation
#ifdef DEBUG

printf(“Debugging message”)

#endif

Inf2C (Computer Systems) - 2009-2010 11

Composite data structures - struct

  Structures – objects without methods:
struct point {

 int x, y;

} p1;

struct point p2;

  To access a structure component, use the struct
member operator “.”
p1.x = 2;

  Structures are not objects
– Whole struct is copied when passed to a function
–  Java passes a reference in this case

Inf2C (Computer Systems) - 2009-2010 12

Composite data structures - union

  Unions – declared and used similarly to structures:
union geomObject {

 struct circle;

 struct rectangle;

} g_obj;

  But all variables inside a union overlap in memory,
–  Space is reserved for the largest of them, not all
– The same memory space can be interpreted in multiple

ways

Inf2C (Computer Systems) - 2009-2010 13

In memory: structures v. unions

var1/var2

union x{
 int var1;
 int var2;
} ux;

ux

struct x{
 int var1;
 int var2;
} sx;

var1
sx

var2

sizeof(ux)  4 sizeof(sx)  8

Inf2C (Computer Systems) - 2009-2010 14

User-defined types

  Define names for new or built-in types
typedef <type> <name>;

  Example:
typedef unsigned char byte;

typedef struct {

 struct point p;

 int rad;

} circle;

...

circle c1, c2;

Inf2C (Computer Systems) - 2009-2010 15

Arrays

  Syntax of C arrays similar to Java, but the rules are
different

  Size is fixed at declaration, when memory space is
allocated for the array, e.g.:
int n[] = {5, 8, 10}; // size fixed to 3
circle c[4]; // array of structs

  Array bounds are not checked
  Functions cannot return arrays

– But can be passed as parameters
  Must use pointers to do any dynamic memory

allocation in C

Inf2C (Computer Systems) - 2009-2010 16

Strings

  C strings are simply arrays of type char
– Encoded in 8bits using ASCII

  They end with '\0', the null character
char s[10]; // up to 9 characters long

  String initialisation
char s[10] = “string”; // '\0‘ implied

Char s1[] = “another string”;
  Usual C rule for arrays apply:

– Cannot store more chars than reserved at declaration
– But bounds are not checked!

Inf2C (Computer Systems) - 2009-2010 17

Strings – common operations

  Assignment: strcpy(s, “string”);
  Length: strlen(s)
  To get the 6th character: s[5]

– First char at position 0, as in Java arrays

  Comparison, strcmp(s1, s2) returns:
–  0 when equal
– Negative number when lexicographically s1 < s2
– Positive when s1>s2

  Must #include<string.h> to call the functions
– Type: man string to see what’s available

Inf2C (Computer Systems) - 2009-2010 18

Pointers

  We have seen pointers in assembly:
 lw $t1,0($s2)

  $s2 points to the location
in memory where the
“real” data is kept

  $s2 is a register, but there’s
nothing stopping us to
have pointers stored in
memory like “normal”
variables

0x100

data 0x100
0x104

Address
reg $s2

0x100

Inf2C (Computer Systems) - 2009-2010 19

C pointers

  A C pointer is a variable that holds the address of
a piece of data

  Declaration:
int *p; // p is a pointer to an int

– The compiler must know what data type the pointer
points to

  Basic pointer usage:
 p = &i; // p points to i now

 *p = 5; // *p is another name for i

  & - address of, * dereference operator

Inf2C (Computer Systems) - 2009-2010 20

Pointers as function arguments

  In C (and Java, for primitive types) function
arguments are passed by value
– Function gets own copy of the arguments values

  How could then a function modify the original
argument variables?
– Pass pointers to the variables

Inf2C (Computer Systems) - 2009-2010 21

Example – the swap function

void swap_wrong(int a, int b) {

 int t=a;

 a=b; b=t;

}

swap_wrong swaps the local variables a,b which are
unknown outside of the function
void swap(int *a, int *b) {

 int t=*a;

 *a=*b; *b=t;

}

Function call: swap(&x, &y);

Inf2C (Computer Systems) - 2009-2010 22

Pointer arithmetic and arrays

C allows arithmetic on pointers:
int a[10];

int *p;

p = &a[0]; // p points to a[0]

p+1 points to a[1]
– Note that &a[1] = &a[0]+4
– The compiler multiplies +1 with the data type size

In general: p+i points to a[i], *(p+i) is a[i]
Even *(a+i) p[i] are allowed

–  but cannot change what a points to. It’s not a variable

Inf2C (Computer Systems) - 2009-2010 23

More pointer arithmetic

Common expressions:
*p++ use value pointed by p, make p point to next element
*++p as above, but increment p first
(*p)++ increment value pointed by p, p is unchanged

  Special value NULL used to show that a pointer is
not pointing to anything
– NULL is typically 0, so statements like if (!p) are

common
  Dereferencing a NULL pointer is a very common

cause of C program crashes

Inf2C (Computer Systems) - 2009-2010 24

Example – pointer arithmetic

Return the length of a string:
int strlen(char *s)
{
 char *p=s;
 while (*s++ !='\0')
 ;
 return s-p;
}

  Argument/variable s is local, so we can change it
  Pointer increment, dereference and comparison all

in one! No statement in the loop body
  Note pointer subtraction at return statement

Inf2C (Computer Systems) - 2009-2010 25

Dynamic memory allocation

  Pointers are not much use with statically allocated
data

  Library function malloc allocates a chunk of
memory at run time and returns the address
int *p;

if ((p = malloc(n*sizeof(int))) == NULL) {

 // Error

}

...

free(p); // release the allocated memory

Inf2C (Computer Systems) - 2009-2010 26

Pointers to pointers

  Consider an array of strings:
char *strTable[10];

  The strings are dynamically allocated ⇒ any size
  But the table size is fixed to 10 strings
  How can we have both dynamically changing in

size at runtime?
char **strTable;

  Since a pointer is a variable, we could have
another pointer pointing to it: pointer to pointer!

Inf2C (Computer Systems) - 2009-2010 27

Pointers to pointers - details

  Space must be allocated both for the table and the
strings themselves
 char **strTable;

 strTable = malloc(n*sizeof(char *));

 for (i=0; i < n; i++) {

 ...

 // s gets a string of length l

 *(strTable+i) = malloc(l*sizeof(char));

 strcpy(strTable[i], s);

 }

 // strTable[i][j] == *(*(strTable+i)+j)

Inf2C (Computer Systems) - 2009-2010 28

That’s all folks

  Not all C features have been covered, but this
introduction should be enough to get you started

  Useful things to learn on your own:
–  Standard input/output: printf, scanf, getc, …
– File handling: fopen, fscanf, fprintf, …

