
Inf2C (Computer Systems) - 2008-2009 1

Lectures 3-4: MIPS instructions

  Motivation
– Learn how a processor’s ‘native’ language looks like
– Discover the most important software-hardware

 interface

Inf2C (Computer Systems) - 2008-2009 2

Outline

  Instruction set
  Basic arithmetic & logic instructions
  Processor registers
  Getting data from the memory
  Control-flow instructions
  Method calls

Inf2C (Computer Systems) - 2008-2009 3

Processor instructions

  Instruction set (IS): collection of all machine
 instructions recognized by a particular
 processor

  The instruction set abstracts away the hardware
 details from the programmer
– The same way as an object hides its implementation

 details from its users

  Instruction Set Architecture (ISA): a generic
 processor implementation that recognizes a
 particular IS

Inf2C (Computer Systems) - 2008-2009 4

RISC – CISC machines

  There are many ways of defining the hardware-software
 interface defined by the instruction set
–  Depends on how much work the hardware is allowed to do

  RISC=Reduced Instruction Set Computer
 CISC=Complex Instruction Set Computer
  High-level language (HLL): a=b+10

 Assembly language:
–  RISC:

–  CISC:

lw r4,0(r2) # r4=memory[r2+0]
add r5,r4,10 # r5=r4+10
sw r5,0(r3) # memory[r3+0]=r5

ADDW3 (R5),(R2),10

Inf2C (Computer Systems) - 2008-2009 5

Assembly language

  Instructions are represented internally as binary
 numbers
– Very hard to make out which instruction is which

  Assembly language: symbolic representation of
 machine instructions

  We use the MIPS IS, typical of a RISC processor

Inf2C (Computer Systems) - 2008-2009 6

Arithmetic & logical operations

  Data processing instructions look like:
operation destination var, 1st operand, 2nd operand

add a,b,c a = b+c
sub a,b,c a = b－c
  Bit-wise logical instructions: and, or, xor
  Shift instructions:
sll a,b,shamt a = b << shamt
srl a,b,shamt a = b >> shamt, logical shift

Inf2C (Computer Systems) - 2008-2009 7

Registers

  IS places restrictions on instruction operands
  RISC processors operate on registers only
  Registers are internal storage locations holding

 program variables
  Size of register equals the machine’s word
  There is a relatively small number of registers

 present; MIPS has 32

Inf2C (Computer Systems) - 2008-2009 8

MIPS general-purpose registers

  Generally, any register available for any use
  Conventions exist for enabling code portability
  Java variables held in registers $s0 – $s7
  Temporary variables: $t0 – $t9
  Register 0 ($zero) is hardwired to 0
  Other registers with special roles
  Program Counter (PC) holds address of next

 instruction to be executed
– Not one of the general purpose registers

Inf2C (Computer Systems) - 2008-2009 9

Immediate operands

  MIPS has instructions with one constant
 (immediate) operand, e.g. addi r1,r2,n # r1=r2+n

addi $s0,$zero,n # $s0=n ($s015-0=n; $s031-16=0)

lui $s1,n1 # $s115-0=0; $s131-16=n1
ori $s1,$s1,n2 # $s115-0=n2; $s131-16=n1

  Load a (small) constant into a register:

  Assembler pseudo-instruction li reg,constant
– Translated into 1 instruction for immediates < 16bits

 and to more instructions for more complicated
 cases e.g. for a 32-bit immediate

Inf2C (Computer Systems) - 2008-2009 10

Getting at the data

  Java:

  MIPS:
 ($s2 points to base of myObj)

Class MyClass {
 int var1,var2;
}
…
myObj = new MyClass()
…
temp = myObj.var2

lw $t1,4($s2) # $t1=memory[4+$s2]

offset of
var2 within myObj

$s2

4

8

230

0

32 bits

var1
var2

Inf2C (Computer Systems) - 2008-2009 11

Data-transfer instructions

  Load Word:

  Store Word:

  Load Byte:

  Store Byte:

lw r1,n(r2) # r1=memory[n+r2]

sw r1,n(r2) # memory[n+r2]=r1

base address
offset

lb r1,n(r2) # r17-0= memory[n+r2]
 r131-8= sign extension

sb r1,n(r2) # memory[n+r2]=r17-0
 no sign extension

Inf2C (Computer Systems) - 2008-2009 12

Memory addressing

  Memory is byte addressable, but it is organised
 so that a word can be accessed directly

  Where can a word be stored?
Anywhere (unaligned), or at an mult. 4 address (aligned)?
  Which is the address of a word?

byte0 byte1 byte2 byte3
0 1 2 3

bit 0 bit 31 Big Endian

word 4
4 5 6 7

byte3 byte2 byte1 byte0
3 2 1 0

bit 0 bit 31 Little Endian

word 4
7 6 5 4

Inf2C (Computer Systems) - 2008-2009 13

Instruction formats

  Instruction representation composed of bit-fields
  Similar instructions have the same format
  MIPS instruction formats:

– R-format (add, sub, …)

op
31 26 21 16 0

rs rt immediate

op
31 26 21 16 11 6 0

rs rt rd shamt
Main
opcode

1st
operand

2nd
operand

result shift sub-function
opcode

func

result

–  I-format (addi, lw, sw, …)

1st
operand

Inf2C (Computer Systems) - 2008-2009 14

MIPS instructions – part 2

  Last time:
– Data processing instructions: add, sub, and, …

 Registers only and immediate types

– Data transfer instructions: lw, sw, lb, sb
–  Instruction encoding

  Today:
– Control transfer instructions

Inf2C (Computer Systems) - 2008-2009 15

Control transfers: If structures

Java:

MIPS:
“branch if equal”: compare value in $s1 with value in $s2

 and if equal then branch to instruction marked label

if (i!=j)
 stmnt1
else
 stmnt2
stmnt3

 beq $s1,$s2,label1
 stmnt1
 j label2 # skip stmnt2
label1: stmnt2
label2: stmnt3

“if case”

“else case”

“follow through”

beq $s1,$s2,label

Inf2C (Computer Systems) - 2008-2009 16

Control transfer instructions

  Conditional branches, I-format:

–  In assembly code label is usually a string
–  In machine code label is obtained from immediate

 value as: branch target = PC + 4 * offset

  Similarly:

  Unconditional jump, J-format: j label

beq r1,r2,label

bne r1,r2,label # if r1!=r2 go to label

4
31 26 21 16 0

r1 r2 offset

2
31 26 0

target

Inf2C (Computer Systems) - 2008-2009 17

Loops in assembly language

  Java:
  MIPS:

  Java:
  MIPS:

while (count!=0) stmnt

loop: beq $s1,$zero,end # $s1 holds count
 stmnt
 j loop # branch back to loop
end: …

while (flag1 && flag2) stmnt

loop: beq $s1,$zero,end # $s1 holds flag1
 beq $s2,$zero,end # $s2 holds flag2
 stmnt
 j loop # branch back to loop
end: …

Inf2C (Computer Systems) - 2008-2009 18

Comparisons

  “Set if less than” (R-format):
–  set r1 to 1 if r2<r3, otherwise set r1 to 0

  Java:
  MIPS example:

–  assume that $s1 contains i and $s2 contains j

while (i > j) stmnt

loop: slt $t0,$s2,$s1 # $t0 = (i > j)
 beq $t0,$zero,end # true if i <= j
 stmnt
 j loop # jump back to loop
end: …

slt r1,r2,r3

Inf2C (Computer Systems) - 2008-2009 19

Method calls

  Method calls are essential even for a small program
  Most processors provide support for method calls
  Java: …

foo();
…
foo();
…

call to foo at line L1

call to foo at line L2

void foo() {
…
return;
}

where do we return to?

Inf2C (Computer Systems) - 2008-2009 20

MIPS support for method calls

  Jumping into the method:
–  “jump and link”: set $ra to PC+4 and set PC to label
– Another J-format instruction

  Returning:
–  “jump register”: set PC to value in register r1

jal label

jr r1

Inf2C (Computer Systems) - 2008-2009 21

Using a stack for method calls

  Nested calls ⇒ must save return address to prevent
 overwriting. Solution: use a stack in memory

  to push a word:

  to pop a word:

call A
…
call B
…
call C

addi $sp,$sp,-4 # move sp down
sw $ra,0($sp) # save r1 on top of stack

sp
(stack
pointer)

C
B
A

lw $ra,0($sp) # fetch value from stack
addi $sp,$sp,4 # move sp up

Addr

Inf2C (Computer Systems) - 2008-2009 22

Other uses of the stack

  Stack used to save caller’s registers, so that they
 can be used by the callee
–  “caller save” or “callee save” convention

  Stack can also be used to pass and return
 parameters
– MIPS uses $a0 – $a4 for the first 4 word-length

 parameters, and $v0, $v1 for return values

return address

(caller context)

parameters

