
Chapter I

Computer systems: the big picture

I.1 Computer architecture

The architecture of modern computers was formed in 1945, when John von
Neumann suggested that the program could be stored in memory along with Von Neumann archi-

tecturethe data, with instructions fetched from memory and decoded for execution.
Earlier electronic computers read their programs either from punched tape or
from a bank of switches and plug-boards, which made setting up each program
time consuming and error-prone. Almost all computers since 1945 have been
based on the von Neumann architecture: a memory holding data and programs,
a processor to fetch and execute instructions that operate on data, and input/out-
put circuitry and devices.

I.1.1 Technology trends

What has changed since is the number of electronic switches in a computer and
their speed. By changing from tubes to transistors, and then to many transistors
tightly connected on a single chip, far more components may be packed into a
small space, more reliably and cheaply, enabling larger memories, and processors
able to do more work in parallel. Also, the smaller components operate faster,
so the whole machine is doubly faster: faster operations, and more operations
in parallel.

The number of transistors on a single chip has increased from 100 or so in
the 1960’s to a few billions on the largest chips now, and continues to grow as
transistors get smaller. Moore’s law holds that transistor counts double about
every 18 months to two years, and that looks set to continue for a while yet. At Moore’s law

the same time, the cost per transistor is also decreasing at a fast rate. Therefore
computers are becoming both faster and cheaper.

The most important consequence of this trend is that it enables the creation
of new applications. Some applications (e.g. the decoding of human DNA)
would not have been possible before computers with high enough speed and
low cost came into existence. Furthermore, the explosive growth of computer
networks and their convergence with the traditional communications networks
have further opened a whole new host of computer applications with no end in
sight.

1

2 Computer systems: the big picture [Chapter I

I.1.2 Types of computers

The large number of applications have lead to the development of three main
classes of computers with different characteristics and operating system require-
ments:

• Servers are powerful machines with a lot of storage and high speed I/O
which are used for handling either few, very computationally intensive
tasks (e.g. scientific and engineering applications) or a large number of
small tasks (e.g. web server). Servers drive the design of high speed proces-
sors and, commonly, contain a few of them on the same board1. They are
designed to be used by multiple users running a number of applications
per user, therefore their operating systems are tuned to achieve this in the
most efficient way.

• The desktop category includes the common personal computer. This is
the type of computer that most people are familiar with. Processors used
in these systems always try to strike a balance between speed and cost.
Although they are typically used by one person at a time, they allow mul-
tiple programs to run concurrently.

• Embedded computers do not look like computers at all. They are used in
equipment which do not have processing/computing as their main pur-
pose. Examples include mobile phones, cars, TV set-top boxes, etc. They
are by far the largest group of computers today and this is likely to hold for
a very long time. The design objective for embedded processors is low cost
and power consumption (because most of them are in small, hand-held de-
vices). They typically run a single application and are not programmable
by their user, therefore the task of their operating system is simpler.

I.1.3 Hardware components

Five hardware parts can always be distinguished in every von Neumann com-
puter:

• The datapath is made up of circuits which perform the actual operations
on the data. In a sense this is the only useful part of a computer; everything
else is there to support the datapath.

• The task of the Control is to fetch instructions from memory and control
the operation — and sequence of operations — of the datapath, memory
and I/O, according to what the instructions command.

1or chip, recently.

§ I.2] The software hierarchy 3

• The memory stores the program instructions and data while it is being
executed.

• Input devices are used for getting data into the computer for processing.
The keyboard, mouse, . . . are common input devices for personal comput-
ers.

• Output hardware is used for getting the results of the computation out of
the machine, e.g. screen, printer. There are obviously devices which are
both input and output, e.g. the hard disk, network, . . .

The datapath and control are collectively called the processor or central pro-
cessing unit (CPU).

I.2 The software hierarchy

For someone who has only programmed a computer using a high-level lan-
guage, the von Neumann model presented above seems quite detached from
what the language provides. This is because the language, the software libraries
and the operating system abstract away most the details of the underlying ma-
chine, effectively creating a two-layer software organisation. At the bottom
layer, one finds the systems software, whose raison d’être is to provide services
for the applications software, that sits at the top layer.

Systems software has two main components: compilers and the operating sys-
tem.

Compilers translate a program written in a high-level language into machine
code that the processor can execute. Because the machine instructions are very Compiler

simple compared to high-level language constructs and statements, this transla-
tion is a complicated task and the subject of other courses. Modern processors
rely heavily on optimising compilers to achieve high-speed program execution.
It is therefore quite frequent for computer architects to also be compiler experts
and vice versa.

The operating system (OS) is a collection of software routines that provide
basic services, such as basic input/output, memory allocation, to other pro- Operating system

grams but it also performs supervisory tasks, such as sharing the processor time
among multiple programs which are executing simultaneously. In this course
we will see what fundamental support the operating system needs from the pro-
cessor hardware and how the OS handles the processor time-sharing task. As
with compilers, a course dedicated to operating systems is offered in the third
year.

