Extreme Programming, an agile software
development process

Paul Jackson

School of Informatics
University of Edinburgh



Recall: Waterfall and Spiral Models

Waterfall:

=
=1,

Implementation

Verification 7

Spiral: Split project into controlled iteration: each iteration is a
mini-waterfall. Spiral in towards the solution.

2/26



Agile processes

What the spiral models were reaching towards was that software
development has to be agile: able to react quickly to change.

The Agile Manifesto http://agilemanifesto.org:

We are uncovering better ways of developing software by
doing it and helping others do it. Through this work we
have come to value:

Individuals and interactions over processes and tools
Working software over comprehensive documentation
Customer collaboration over contract negotiation
Responding to change over following a plan

That is, while there is value in the items on the right, we
value the items on the left more.

3/26


http://agilemanifesto.org

Agile flowchart

Unfinished
Features

Most Important

Fea ures
Ileratwe
F'Iannlng
A Proje
Heart
Workin
Softwarg Eﬁﬂgﬂ

\Empowerme /

Daily Communlcatlon

/26



12 principles of Agile

» Customer satisfaction by rapid delivery of useful software

> Welcome changing requirements, even late in development

» Working software is delivered frequently (weeks rather than
months)

» Working software is the principal measure of progress

» Sustainable development, able to maintain a constant pace

» Close, daily co-operation between business people and
developers

» Face-to-face conversation is the best form of communication
(co-location)

» Projects are built around motivated individuals, who should be
trusted to get job done, given right support

» Continuous attention to technical excellence and good design

» Simplicity — the art of maximizing the amount of work not
done — is essential

» Best requirements and designs from self-organizing teams

> Regular reflection on process and tuning of behaviour

5/26



Extreme Programming

One variant: Extreme Programming (XP) is

“a humanistic discipline of software development, based on values
of communication, simplicity, feedback and courage”

People: Kent Beck, Ward Cunningham, Ron Jeffries, Martin Fowler,
Erich Gamma...

More info: www.extremeprogramming.org,
Beck "Extreme Programming Explained: Embrace Change”

6 /26



Example risks and the XP responses

schedule slips:

Short iterations give frequent feedback; features prioritised
project cancelled after many slips:

Customer chooses smallest release with biggest value

system goes sour after release:
Frequent rerunning of tests maintains quality

defect rate too high at release:

Tests written with both unit-level and customer perspectives
business misunderstood:

Customer representative embedded in development team
false feature rich:

Only highest priority tasks addressed

staff turnover:

Programmers estimate task times; new programmers nurtured

26



Key insight of XP

Traditional methodologies are that way because

the cost of coping with a requirements change or
correcting a defect rises exponentially through the
development lifecycle

Need: flexibility without cost

Keeping cost down is

» partly luck (i.e. being in the kind of project where that's
possible)

» partly judgement (e.g., following those of XP's practices, like
refactoring, which help to reduce cost).

8/26



XP classification of software development activities

v

coding

v

testing

v

listening

v

designing

/26



XP Practices

The Planning Game
Small releases
Metaphor

Simple design
Testing

Refactoring

Pair programming
Collective ownership
Continuous integration
40-hour week
On-site customer
Coding standards

10/26



The Planning Game

» Release planning game — customer and developers.

> lteration planning game — just developers

Customer understands scope, priority, business needs for releases:
sorts cards by priority.

Developers estimate risk and effort: sorts cards by risk, split cards
if more than 2-4 weeks.

“Game” captures, e.g., that you can’'t make a total release in less
than the sum of the times it's going to take to do all the bits:
that's against the rules.

11/26



On-site customer

A customer — someone capable of making the business's decisions
in the planning game — sits with the development team (maybe
doing their normal work when not needed to interact with the
development team), always ready to clarify, write functional tests,
make small-scale priority and scope decisions.

12/26



Small releases

Release as frequently as is possible whilst still adding some
business value in each release. This ensures that you get feedback
as soon as possible and lets the customer have the most essential
functionality asap. (May be talking about every week to every
month — outside XP each 6 months would be more usual even in
an iterative project, longer not uncommon.)

13 /26



Metaphor

Is basically XP's word for part of what other people call
architecture — it avoids the word architecture to emphasise that it
doesn’t just mean the overall structure of the system. “Metaphor’
is intended to suggest an overarching coherence, easily
communicated.

14 /26



Continuous integration

Code is integrated and tested at most a few hours or one day after
being written. E.g. when a pair wants to checkpoint they go to an
integration machine, integrate and fix any bugs against the latest
full build, add their changes to the central CM database.

15/26



Simple design

Motto: do the simplest thing that could possibly work. Don't
design for tomorrow: you might not need it.

16 /26



Testing

Any program feature without an automated test simply doesn't
exist.

Test everything that could break. Programmers write unit tests
using a good automated testing framework (e.g. JUnit) to
minimise the effort of writing running and checking tests.
Customers, with developer help, write functional tests.

17 /26



Refactoring

As we discussed before: but here refactoring is especially vital
because of the way XP dives almost straight into coding. Later
redesign is vital. A maxim for not getting buried in refactoring is
“Three strikes and you refactor”: For example, consider removing
code duplication.

1. The first time you need some piece of code you just write it.
2. The second time, you curse but probably duplicate it anyway.
3. The third time, you refactor and use the shared code.

i.e. do refactorings that you know are beneficial

(NB you have to know about the duplication and have
“permission” to fix it... ownership in common)

18 /26



Pair programmlng

All production code is written by two people at one machine.
You pair with different people on the team and take each role at
different times.

There are two roles in each pair. The one with the
keyboard and the mouse, is coding. The other partner is
thinking more strategically about:

> [s this whole approach going to work?

» What are some other test cases that might not work
yet?

> [s there some way to simplify the whole system so
the current problem just disappears?

19/26



Collective ownership

i.e. you don't have “your modules” which no-one else is allowed to
touch. If any pair sees a way to improve the design of the whole
system they don’t need anyone else’'s permission to go ahead and
make all the necessary changes. Of course a good configuration
management tool is vital.

20/26



Coding standards

The whole team adheres to a single set of conventions about how
code is written (in order to make pair programming and collective
ownership work).

21/26



Sustainable pace

aka 40 hour week, but this means not 60, rather than not 35!

People need to be fresh, creative, careful and confident to work
effectively in the way XP prescribes.

There might be a week coming up to deadlines when people had to

work more than this, but there shouldn’t be two consecutive such
weeks.

22/26



Mix and match?

Can you use just some of the XP practices?
Maybe... but they are very interrelated, so it's dangerous.

E.g., if you do collective ownership but not coding standards, the
code will end up a mess;

if you do simple design but not refactoring, you'll get stuck!

23 /26



Where is XP applicable?

The scope of situations in which XP is appropriate is somewhat
controversial. Two examples

> there are documentated cases where it has worked well for
development in-house of custom software for a given
organisation (e.g. Chrysler).

» A decade ago it seemed clear that it wouldn't work for
Microsoft: big releases were an essential part of the business;
even the frequency of updates they did used to annoy people.
Now we have automated updates to OSs, and Microsoft is a
Gold Sponsor of an Agile conference

XP does need: team in one place, customer on site, etc. “Agile” is
broader. Other Agile processes include Scrum and DSDM.

24 /26



Relating different processes

Agile home ground
Low criticality
Senior developers
Requirements change often

sSmall number of developers

Plan-driven home ground Formal methods
High criticality Extreme criticality
Junior developers Senior developers

Requirements do not change often| Limited requirements, limited features

Large number of developers Requirements that can be modeled

Culture that responds to change Culture that demands order Extreme quality

25 /26



Reading

Suggested : Extreme Programming explained: Embrace change.
Kent Beck.

Suggested : Sommerville.
Significantly more in 9th and 10th Eds (Ch 3). than
8th Ed. (17.1, 17.2).
Good for balance.

26 /26



