
Software Requirements to
Design

1

Announcements

 HW1 – Any questions?

 Difference between Requirements and Use Cases -

– Requirements: Functional requirements capture the
intended behavior of the system. This behavior may be
expressed as services, tasks or functions the system is
required to perform.

– Use Cases: A use case defines a goal-oriented set of
interactions between external actors and the system under
consideration.

 HW1 due Thursday at Noon

 HW2 handed out on Thursday

 2

The World Machine Model
Mainly “Will It Work?”

3

Capture the Right Thing

 Requirements are always in the system
domain

 Software specification is in the computer
domain

 There are several levels of abstraction in
between

 Abstract away some details but not others

 4

Fall 2013CSci 5801 - Dr. Mats Heimdahl5

The WRSPM Model

 We want to make a change in the environment

 We will build some system to do it

 This system must interact with the environment

Environment System

Interface

Fall 2013CSci 5801 - Dr. Mats Heimdahl6

The WRSPM Model

Environment System

Interface

W R MS P

W – The World Assumptions (domain model)
R – The Requirements
S – The system specification
P – The Program (running on the machine)
M – The machine physically implementing the system

Fall 2013CSci 5801 - Dr. Mats Heimdahl7

The Variables in WRSPM

Environment System

Interface

eh shev sv

Visibility Control

Patient Monitor

 Desire

 A warning system that notifies a
nurse if the patients heart stops

 “Real” Requirement

 When the patient’s heart stops, a
nurse shall be notified

 “System” Requirement

 When the sound from the sensor
(microphone taped over the heart)
falls below a certain threshold, the
alarm shall be actuated

For Illustration Only

 8

Patient Monitor

 Desire

 A warning system that notifies a
nurse if the patients heart stops

 “Real” Requirement

 When the patient’s heart stops, a
nurse shall be notified

 “System” Requirement

 When the sound from the sensor
(microphone taped over the heart)
falls below a certain threshold, the
alarm shall be actuated

For Illustration Only

 9

Does this system satisfy
the “real” requirement?

Fall 2013CSci 5801 - Dr. Mats Heimdahl10

Artifacts Related to Variables

W R MS P

eh shev sv

Patient Monitoring

 Requirements Definition

 A warning system that notifies the nurse if the patients heart stops

 System Design

 A computer that can be programmed to use a microphone as a
sensor and a buzzer as an actuator

 Requirements Specification

 If the sound from the sensor falls below a certain threshold, the
buzzer shall be actuated

 11

Patient Monitoring will Work

 If we take a computer that can be programmed to use a
microphone as a sensor and a buzzer as an actuator,

 and if we program this computer to sound the buzzer
when the sound from the sensor falls below a certain
threshold,

 we will have a warning system that notifies the nurse if
the patients heart stops

 Do we believe this?

 12

Patient Monitoring will Work

 13

 If we take a computer that can be programmed to use a
microphone as a sensor and a buzzer as an actuator,

 and if we program this computer to sound the buzzer when the
sound from the sensor falls below a certain threshold,

 we will have a warning system that notifies the nurse if the patients
heart stops

 Because

 There will always be a nurse close enough to hear the buzzer, and

 the sound from the heart falling below a certain threshold indicates
that heart has (is about) to stop

Fall 2013CSci 5801 - Dr. Mats Heimdahl14

eh, ev, sv, and sh???

Computer

Thermometer

Burner

Furnace

Fall 2013CSci 5801 - Dr. Mats Heimdahl15

eh, ev, sv, and sh???

Computer

Thermometer

Burner

Furnace

temperature

power output

measured-temp

power-command

system clock

time

Fall 2013CSci 5801 - Dr. Mats Heimdahl16

Artifacts Related to Variables

W R MS P

eh shev sv

Example

 17

Requirement—R
Allow pedestrians to cross
the road safely

Specification—S
Show a red light to the cars and a
green light to the pedestrians

What is W so that W
and S togther
satisfy R?

Example

 18

Requirement—R
Allow pedestrians to cross
the road safely

World Knowledge—W
1. Drivers stop at red lights
2. Pedestrians walk when green

Specification—S
Show a red light to the cars and a
green light to the pedestrians

W and S satisfies R

Specification—S
Never show a green light to
both pedestrians and cars

Example—Safety

Safety Requirement—R
Pedestrians and cars cannot be in the
intersection at the same time

World Knowledge—W
1. Drivers stop at red lights
2. Pedestrians stop at red lights
3. Drivers drive at green lights
4. Pedestrians walk when green

W and S satisfies R

 19

World Knowledge is Essential

 This is the most error prone part of the
requirements
 Most problems can be traced to erroneous

assumptions about the environment

 Patriot missile—clock drift

 TCAS—transponder assumptions

 NY subway—separation not enough

 Must be rigorously validated and
continually questioned

 20

Traffic alert and Collision
Avoidance System (TCAS II)

 21

 22

In General We Want to Show

 The specification satisfies the requirements

 W and S satisfies R (W, S ⇒ R)

 The implementation satisfies the requirements

 W, M, P ⇒ R

This is the essence of any argument that your system is
“right”

 The implementation satisfies the specification

 M, P ⇒ S

We Have Learned

 What requirements really are

 The relationship between system and
environment

 The WRSPM model

 23

Software Design
Fundamentals of Design

Deriving a solution which satisfies the software requirements

24

Today’s Objectives

 To define design

 To introduce the design process

 To preview two design strategies

 Functional decomposition

 Object Oriented design

 Quick overview of design criteria

 25

What is Design?

 Design

 The creative process of transforming a problem into a
solution

 In our case, transforming a requirements specification
into a detailed description of the software

 Design

 The description of the solution

 In our case, we will develop a software design

 26

Fall 2013CSci 5801 - Dr. Mats Heimdahl27

General Design Process

Identify nature
of requirement

External
requirements

Analyze and build
model of problem

Requirements
specification

Postulate a design
solution

Functional
specification

Validate
solution

Functional
specification

Designer’s
model

Seek new
solution

Implement
solution Design

“blueprints”

Refine design
solution

Designer’s
model

Mismatch between
model and
requirements

Stages of Design

 Problem understanding

 Look at the problem from different angles to discover the design
requirements

 Identify one or more solutions

 Evaluate possible solutions and choose the most appropriate
depending on the designer's experience and available resources

 Describe solution abstractions

 Use graphical, formal or other descriptive notations to describe
the components of the design

 Repeat process for each identified abstraction
until the design is expressed in primitive terms

 28

Fall 2013CSci 5801 - Dr. Mats Heimdahl29

Design Activities

Design Products

Phases in the Design Process

Requirements
Specification

Architectural
Design

Abstract
Specification

Interface
Design

Component
Design

Data
Design

Algorithm
Design

System
Architecture

Software
Specification

Interface
Specification

Component
Specification

Data
Specification

Algorithm
Specification

Design Phases

 Architectural design

 Identify sub-systems

 Abstract specification

 Specify sub-systems

 Interface design

 Describe sub-system
interfaces

 Component design

 Decompose sub-systems
into components

 Data structure design

 Design data structures
to hold problem data

 Algorithm design

 Design algorithms for
problem functions

 30

Hierarchical Design Structure

 31

System Level

Sub-System Level

Hierarchical Design Structure

 32

System Level

Sub-System Level

Top-down Design

 In principle, top-down design involves
starting at the uppermost components in the
hierarchy and working down the hierarchy
level by level

 In practice, large systems design is never
truly top-down

 Some branches are designed before others

 Designers reuse experience (and sometimes
components) during the design process

 33

Design Description

 Graphical notations

 Used to display component relationships

 Program description languages

 Based on programming languages but with more flexibility to represent
abstract concepts

 Informal text

 Natural language description

 All of these notations may be used in large systems design

 34

Design Strategies

 Functional design

 The system is designed from a functional viewpoint

 The system state is centralized and shared between the
functions operating on that state

 Object-oriented design

 The system is viewed as a collection of interacting objects

 The system state is de-centralized and each object
manages its own state

 Objects may be instances of an object class and
communicate by exchanging messages

 35

 36

Functional View of a Compiler

Scan
Source Build

Symbol
Table

Analyze Generate
Code

Output
Errors

Symbol
Table

Source
Program

To
ke

ns

Tokens
Syntax
Tree

Object
Code

Symbols
Symbols

Error
Indicator

Error
Messages

 37

Object-Oriented View of a Compiler

Source
Program

Token
Stream

Symbol
Table

Syntax
Tree

Abstract
Code

Object
Code

Grammar
Error
Message

Scan Add

Check Get

Build

Generate

Generate

Print

Key Points

 Design is a creative process

 Design activities include architectural design,
system specification, component design, data
structure design and algorithm design

 Functional decomposition considers the system
as a set of functional units

 Object-oriented decomposition considers the
system as a set of objects

 38

Software Design

Criteria for a good design

Courtesy Mats Heimdahl

Objectives

 To discuss some design quality attributes
 “Clarity”

 Simplicity

 Modularity

 Coupling

 Cohesion

 Information hiding

 Data encapsulation

 “Ilities”

● Adaptability
● Traceability

 40

Design Quality

 Design quality is an elusive concept
 Quality depends on specific organizational priorities

 A “good” design may be the most efficient, the cheapest, the
most maintainable, the most reliable, etc

 The attributes discussed here are concerned
with the clarity and maintainability of the design

 Quality characteristics are equally applicable to function-
oriented and object-oriented designs

 41

Fall 2013CSci 5801 - Dr. Mats Heimdahl42

Efficiency Costs

Cost

Efficiency
Safety
Security
Maintainability

Our Focus is Clarity and Ease of
Change

 Simplicity

 Modularity

 Coupling

 Cohesion

 Information hiding

 Data encapsulation

 Some “ilities”

 Adaptability

 Traceability

 Etc.

 43

Modularity

 A complex system must be broken down into smaller
modules

 Three goals with modularity
 Decomposability

▪ Break the system down into understandable modules

▪ Divide and conquer

 Composability

▪ Construct a system from smaller pieces

▪ Reuse, ease of maintenance, OO frameworks

 Ease of understanding

▪ The system will be changed; we must understand it

▪ Understand in pieces versus understanding the whole

 44

 45

More Modularity

 46

Two Essential Properties

Low Coupling

High Cohesion

Cohesion

 A measure of how well a component “fits together”

 A component should implement a single logical
entity or function

 Cohesion is a desirable design component attribute
as when a change has to be made, it is localized in
a single cohesive component

 Various levels of cohesion have been identified

 47

Cohesion Levels

 Coincidental cohesion (weak)

 Parts of a component are simply bundled together

 Logical association (weak)

 Components which perform similar functions are grouped

 Temporal cohesion (weak)

 Components which are activated at the same time are grouped

 Procedural cohesion (weak)

 The elements in a component make up a single control sequence

 48

Cohesion Levels

 49

 Communicational cohesion (medium)

 All the elements of a component operate on the same input or
produce the same output

 Sequential cohesion (medium)

 The output for one part of a component is the input to another part

 Functional cohesion (strong)

 Each part of a component is necessary for the execution of a
single function

 Object cohesion (strong) (Data cohesion)

 Each operation provides functionality which allows object attributes
to be modified or inspected

Coupling

 A measure of the strength of the inter-connections
between system components

 Loose coupling means component changes are
unlikely to affect other components

 Shared variables or control information exchange
lead to tight coupling

 Loose coupling can be achieved by state
decentralization (as in objects) and component
communication via parameters or message passing

 51

Tight Coupling

Module A Module B

Module C Module D

Shared
Data

Loose Coupling

 52

Module A

A’s Data

Module D

D’s Data

Module B

B’s Data

Module C

C’s Data

Food For Thought

 How do global variables affect coupling?

 How about large data structures?

 Classes provide a nice encapsulation
mechanism and if done right provides
cohesive modules
 What does inheritance do to coupling and

cohesion?

 53

Information Hiding

 Put the complexity inside a “black box”

 Hide it from the user of the box

 The user does not need to know “how” the box works, just “what”
it does

 Greatly reduces the amount of information the designer
needs to understand at once

 Examples

 Functions, macros, classes, libraries

 54

 55

Example

void sortAscending (int *array, int length)

 We do not know “what” sort routine is used

 All we need to know is what the interface is and
“what” the module does

Data Encapsulation

 Encapsulate the data (or information) a module is
working on

 Protect the data from unauthorized access

 Nobody else can mess with the data

 If it gets corrupted, it must have been done in this module

 Helps you find where the problem is

 Makes the design more robust

 Chances are that new additions will not mess up your old
code

 56

 57

Example

int a[] ; int i, l;

void sortAscending()

{ /* body */ }

/* calling function */

a = myArray;

l = arrayLength;

i = 0;

sortAscending();

void sortAscending
(int *array, int length)

{ int i;

 /* body */ }

/* calling function */

sortAscending

(myArray, arrayLength);

Understandability

 Related to many
component characteristics

 Cohesion

 Can the component be understood
on its own?

 Naming

 Are meaningful names used?

 Documentation

 Is the design well-documented?

 Complexity

 Are complex algorithms used?

 Informally, high complexity
means many relationships
between different parts of
the design

 Hence it is hard to
understand

 Most design quality
metrics are oriented
towards complexity
measurement

 They are of limited use

 58

Adaptability

 A design is adaptable if:

 Its components are loosely coupled

 It is well-documented and the documentation is up to date

 There is an obvious correspondence between design levels
(design visibility)

 Each component is a self-contained entity (tightly cohesive)

 To adapt a design, it must be possible to trace the links
between design components so that change
consequences can be analyzed

 59

Fall 2013CSci 5801 - Dr. Mats Heimdahl60

Design Traceability

A

B
C

D
Architectural
Level

X Z

Y Functional
Decomposition

Adaptability and Inheritance

 Inheritance dramatically improves adaptability

 Components may be adapted without change by
deriving a sub-class and modifying that derived class

 However, as the depth of the inheritance
hierarchy increases, it becomes increasingly
complex

 It must be periodically reviewed and restructured

 61

We Have Learned

 There are desirable design attributes

 Keep it simple!!

 Coupling and cohesion are absolutely
central to good software engineering

 Always keep this in mind!

 Information hiding and data encapsulation
are almost as central

 Always keep this in mind!

 62

