
Requirements Analysis

Understanding the customer’s
requirements for a software system

1

Announcements

● Homework 1 – Correction in “Resume”
button functionality. Download updated
Homework 1 handout from web page.

● Papyrus Tool - Installation instructions on
Eclipse 4.2 and step by step guide to start
a new UML model are available on the
webpage.

Goals For Today

 Understanding the concept of Stakeholder

 Discuss a few techniques for getting all
the information we need to develop a
system
 Requirements Elicitation/Analysis

 3

Requirements Analysis

 Sometimes called requirements elicitation or
requirements discovery

 Involves supplier (technical or non-technical) staff
working with customers to find out about the
application domain, the services that the system
should provide and the system’s operational
constraints

 May involve end-users, managers, engineers
involved in maintenance, domain experts, trade
unions, etc.
 These are called stakeholders

 4

The Requirements Engineering
Process

Fall 2013CSci 5801 - Dr. Mats P.E. Heimdahl5

Feasibility
Study

Requirements
Analysis

Requirements
Definition

Requirements
Specification

Requirements
Document

Specification of
Requirements

Definition of
Requirements

System
ModelsFeasibility

Report

Requirements Elicitation

 6

The Requirements Analysis
Process

Fall 2013CSci 5801 - Dr. Mats P.E. Heimdahl7

Domain
Understanding

Requirements
Validation

Prioritization

Requirements
Definition and
Specification

Conflict
Resolution

Classification

Requirements
Collection

Process
Entry

Interview the User

 Make sure you have the right user

 Is this user’s answers official?

 Find out what they are willing to pay for each function

 Helps in prioritization

 Try to be context free

 Avoid

 We thought you knew that.

 We always do it that way.

 Hundreds of techniques

 More or less suitable for your organization and problem

 Be creative and do some research before the process starts

 8

Often
Conflicting}

Viewpoint-Oriented Analysis

 Stakeholders represent different ways of
looking at a problem or problem
viewpoints

 This multi-perspective analysis is
important as there is no single correct way
to analyze system requirements

 Ian Sommerville

 9

Stakeholders Must Work

 10

Stakeholders Must Work

 11

Multiple Problem Viewpoints

Fall 2013CSci 5801 - Dr. Mats P.E. Heimdahl12

Problem
Under
Analysis

Types of Viewpoint

 Data sources or sinks

 Viewpoints are responsible for producing or consuming
data

 Receivers of services

 Viewpoints are external to the system and receive services
from it

 Experts in the domain

 Representation frameworks

 Viewpoints represent particular types of system models

 13

Autoteller Viewpoints

 14

Autoteller Viewpoints

 15

Bank customers

Representatives of other banks

Hardware and software maintenance engineers

Marketing department

Bank managers and counter staff

Database administrators

Security staff

Communications engineers

Personnel department

Use Cases in UML

 16

A c c o u n t H o l d e r

W i t h d r a w c a s h

Q u e r y b a l a n c e

O r d e r c h e c k s
S e n d m e s s a g e

F o r e i g n C u s t o m e r

B a n k T e l l e r
O r d e r s t a t e m e n t

T r a n s f e r f u n d s

R u n d i a g n o s t i c s

A d d c a s h

What is a Use-Case

 A use-case captures some user visible function

 This may be a large or small function

 Depends on the level of detail in your modeling effort

 A use-case achieves a discrete goal for the user

 Examples

 Format a document

 Request an elevator

 How are the use cases found (captured or elicited)?

 17

User Goals versus User
Interactions

 Consider the following when formatting a document
– Define a style

– Change a style

– Copy a style from one document to the next

 versus

 Format a document

 Ensure consistent formatting of two documents

 The latter is a user goal
 Something the user wants to achieve

 The former are user interactions
 Things the user does to the system to achieve the goal

 18

Goals and Interactions

 There is a place for both goals and interactions

 Understand what the system shall do

 Capture the user goals

 Understand how the user will achieve the goals

 Capture user interactions

 Sequences of user interactions

 Thus, start with the user goals and then refine the user goals
into several (many) user interactions

 Users are referred to as Actors (does not have to be human)

 Primary Actor- is the actor with the goal the use case is trying
to satisfy

 Secondary Actor – Actor with which the system communicates
while carrying out the use case.

 19

Use Case Goal – Buy a
Product

 Other scenarios – Credit card authorization might
fail, you may have a regular customer for whom
you don't need to capture shipping and credit card
information.

 Scenarios are different, yet the goal of the user in
all the scenarios is the same - “Buy a Product”.

 A use case is a set of scenarios tied together by a
common user goal.

The customer browses the catalogue in an on-line shop and adds the
desired items to the basket. When the customer wishes to pay, the
customer describes the shipping and credit card information and confirms
the sale. The system checks the authorization on the credit cards and
confirms the sale both immediately and with a follow up email.

Buy a Product Use-Case

Buy a Product

Main Success Scenario

1. Customer browses catalog and
selects items to buy

2. Customer goes to check out

3. Customer fills shipping info.

4. Systems presents full pricing
information.

5. Customer fills in credit card info.

6. System authorizes purchase

7. System confirms sale immediately

8. System sends confirmation email
to customer

Extensions

3a: Customer is regular customer

.1: System displays current
shipping and billing information

.2:Customer may accept or
override these defaults, returns
to MSS at step 6

6a: System fails to authorize credit
card purchase

.1: Customer may reenter credit
card information or may cancel

 21

 22

Use-Cases for the Viewpoints

Cash withdrawal - correct PID.
The customer inserts the card in the ATM. The ATM
accepts the card and asks the user for the PID. If the
PID is correct, the ATM asks the user from which
account the funds should be drawn. The user enters
the account. The ATM asks the user for the amount.
The user enters the amount. The ATM asks the user
to verify the account. The user verifies the account. If
there are sufficient funds in the account, the money is
dispensed and the amount is withdrawn from the
account.

Structure the Use-Cases

 Cash withdrawal - correct PID

1.The customer inserts the card in the ATM.

2.The ATM accepts the card and asks the user for the PID.

3.If the PID is correct, the ATM asks the user from which account the funds should
be drawn.

4.The user enters the account.

5.The ATM asks the user for the amount.

6.The user enters the amount.

7.The ATM asks the user to verify the account.

8.The user verifies the account.

9.If there are sufficient funds in the account, the money is dispensed and the amount
is withdrawn from the account.

 23

Use-Case Templates Help

 Example on web

 24

Use-Case Diagrams

 25

Adapted from Larman “Applying UML and Patterns”

C u s t o m e rC a s h i e r

B u y I t e m

L o g I n

R e f u n d a P u r c h a s e d I t e m

P O S T

U s e C a s e

S y s t e m B o u n d a r y

M H

Example from Fowler

 26

Adapted from Fowler “UML Distilled”

S a l e s p e r s o n

T r a d e r

A c c o u n t i n g S y s t e m

T r a d i n g M a n a g e r

S e t L i m i t s

U p d a t e A c c o u n t s

A n a l y z e R i s k

P r i c e D e a l

C a p t u r e D e a l

L i m i t E x c e e d e d

V a l u a t i o n

« u s e s »

« u s e s »

« e x t e n d s »

M H

Uses and Extends

 Uses

 You have a piece of behavior that is
similar across many use cases

 Break this out as a separate use-case
and let the other ones “use” it

 Examples include

▪ Valuation

▪ Validate user interaction

▪ Sanity check on sensor inputs

▪ Check for proper authorization

 Extends

 A use-case is similar to another
one but does a little bit more

 Put the normal behavior in one
use-case and the exceptional
behavior somewhere else

 Capture the normal behavior

 Try to figure out what can go
wrong in each step

 Capture the exceptional cases in
separate use-cases

 Makes it a lot easier to
understand

 27

Setting the System Boundary

 The system boundary will affect your
actors and use-cases

 28

Adapted from Larman “Applying UML and Patterns”

C u s t o m e rC a s h i e r

B u y I t e m

L o g I n

R e f u n d a P u r c h a s e d I t e m

P O S T

M H

A Different Boundary

 Let us view the whole store as our system

 29

Adapted from Larman “Applying UML and Patterns”

C u s t o m e r

B u y I t e m

R e f u n d a P u r c h a s e d I t e m

S t o r e

M H

Partial POST

 30

Adapted from Larman “Applying UML and Patterns”

C u s t o m e rC a s h i e r

B u y I t e m

L o g I n

R e f u n d a P u r c h a s e d I t e m

P O S T

S t a r t U p

M a n a g e U s e r s

A n d a L o t M o r e

M a n a g e r

S y s t e m A d m i n i s t r a t o r

M H

 31

POST Scenario

Use case: Buy Item

Actors: Customer (initiator), Cashier

Type: Primary

Description: The Customer arrives at the

checkout with items to purchase.

The Cashier records the purchase

items and collects a payment.

On completion the Customer

leaves with the items

 32

POST Expanded Scenario

Use case: Buy Item

Actors: Customer (initiator), Cashier

Type: Primary and essential

Description: The Customer arrives at the checkout with items

to purchase. The Cashier records the purchase

items and collects a payment. On completion the

Customer leaves with the items.

Cross Ref.: Requirements XX, YY, and ZZ

Use-Cases:Cashier must have completed the Log In use-case

Fall 2013CSci 5801 - Dr. Mats P.E. Heimdahl33

90

80

70

60

50

On

Off

Controller

Fuel Valve

Burner

Water Pump

Hot Water

Fuel

Temp Sensor

Water Valve

Control Panel

Home

The Home Heating System

Home Heating Use-Case Diagram

 34

H o m e O w n e r

M H

P o w e r U p

P o w e r D o w n

C h a n g e T e m p .

H o m e H e a t i n g

 35

Home Heating Scenario

Use case: Power Up
Actors: Home Owner (initiator)
Type: Primary and essential
Description:The Home Owner turns the power on. Each room

is temperature checked. If a room is below the
the desired temperature the valve for the room is
opened, the water pump started, the fuel valve
opened, and the burner ignited.
If the temperature in all rooms is above the desired
temperature, no actions are taken.

Cross Ref.: Requirements XX, YY, and ZZ
Use-Cases:None

Modified Home Heating

 36

H o m e O w n e r

M H

P o w e r U p

P o w e r D o w n

C h a n g e T e m p .

H o m e H e a t i n g

A d j u s t T e m p

T e m p . H i g h

T e m p . L o w

« u s e s »

« u s e s »

« u s e s »

« u s e s »

HACS

 Homework assignment and collection are an integral part of any
educational system. Today, this task is performed manually. What we want
the homework assignment distribution and collection system (HACS for
short) to do is to automate this process.

 HACS will be used by the instructor to distribute the homework
assignments, review the students’ solutions, distribute suggested solution,
and distribute student grades on each assignment.

 HACS shall also help the students by automatically distribute the
assignments to the students, provide a facility where the students can
submit their solutions, remind the students when an assignment is almost
due, remind the students when an assignment is overdue.

 37

 38

HACS Use-Case Diagram

I n s t r u c t o r

S t u d e n t

S y s t e m A d m i n

M H

C o n f i g u r e H A C S

D i s t r i b u t e A s i g n m e n t s

P o s t S o l u t i o n s

D i s t r i b u t e G r a d e

R e m i n d S t u d e n t

S u b m i t A s s i g n m e n t

G e t S o l u t i o n

G e t G r a d e

G e t A s s i g n m e n t

H A C S

 39

HACS Scenario

Use case: Distribute Assignments
Actors: Instructor (initiator)
Type: Primary and essential
Description: The Instructor completes an assignment and submits

it to the system. The instructor will also submit the
due date and the class the assignment is assigned for.

Cross Ref.: Requirements XX, YY, and ZZ
Use-Cases: Configure HACS must be done before any user

(Instructor or Student) can use HACS

 40

Alternate HACS

I n s t r u c t o r

S t u d e n t

S y s t e m A d m i n

M H

C o n f i g u r e H A C S

D i s t r i b u t e A s i g n m e n t s

P o s t S o l u t i o n s

D i s t r i b u t e G r a d e

R e m i n d S t u d e n t

S u b m i t A s s i g n m e n t

H A C S

 41

Alternate HACS Scenario

Use case: Distribute Assignments
Actors: Instructor (initiator), Student
Type: Primary and essential
Description: The Instructor completes an assignment and submits

it to the system. The instructor will also submit the
delivery date, due date, and the class the assignment
is assigned for. The system will at the due date mail
the assignment to the student.

Cross Ref.: Requirements XX, YY, and ZZ
Use-Cases: Configure HACS must be done before any user

(Instructor or Student) can use HACS

When to use Use-Cases

 In short, always!!!

 Requirements is the toughest part of software
development

 Use-Cases is a powerful tool to understand

 Who your users are (including interacting systems)

 What functions the system shall provide

 How these functions work at a high level

 Spend adequate time on requirements and in the
elaboration phase

 42

Checklists and Testing

 43

Use Checklists to Avoid
Forgetting

F
al
l
2
0
1
3

C
S
ci
5
8
0
1
-
D
r.
M
a
ts
P
.
E
.
H
ei
m
d
a
hl

44

Missing Requirements

Fall 2013CSci 5801 - Dr. Mats P.E. Heimdahl45

Computer

Thermometer

Burner

Furnace

How Do We Avoid Forgetting?

 Find skilled application specialists

 “Domain Engineers”

 Let them develop the requirements

 Consider as many viewpoints as you can

 Gather use-cases with the customers

 Use checklists and guidelines to point out common
problems

 Application independent guidelines and properties

 System specific guidelines and properties

 46

Properties of Embedded Systems

 Is the software’s response to out-of-range values
specified?

 Is the software’s response to not receiving an
expected input specified?

 If input arrives when it should not, is a response
specified?

 Is startup behavior adequately specified?

 Are all possible scenarios covered?

 Have we specified exceptional behavior?

 47

Checklists are Effective

 On two NASA spacecraft projects 192 critical
errors were found during integration and testing

 142 of those errors were addressed by a simple
safety-checklist

 Most problems with unexpected input

 Unexpected value as well as unexpected timing

 48

Key Points

 Consider all stakeholders to complete the
functional and non-functional
requirements

 Always have a heavy customer
involvement

 Use checklists with known problem areas
to avoid forgetting things

 Learn from other’s (and your own) mistakes

 49

Derive Test Cases for the
Requirements

If you can’t test it, it is not a requirement!

 50

Requirements Verifiability

 Consider the requirement:

 The system should be easy to use by experienced engineers
and should be organized in such a way that user errors are
minimized.

 The problem with this requirement is its use of vague
terms such as “errors shall be minimized”

 The error rate must be quantified

 Experienced engineers shall be able to use all the system
functions after a total of two hours training

 After this training, the average number of errors made by
experienced engineers shall not exceed two per day

F
al
l
2
0
1
3

C
S
ci
5
8
0
1
-
D
r.
M
a
ts
P
.
E
.
H
ei
m
d
a
hl

51

Typical Requirements

 After a high temperature is detected, an alarm must
be raised quickly

 Novice users should be able to learn the interface
with little training

 How in the world do you test requirements like
this??

 52

 53

Test the Requirement

Test Case 1
Input

Artificially raise the temperature above threshold

Test procedure

Measure the time it takes for the alarm to come on

Expected output

The alarm shall be on within 2 seconds

 54

Test the Requirement

Test Case 2
Input

Identify 10 new users and put them through the training
course (max 6 hours)

Test procedure

Monitor the work of the users for 10 days after the training
course has been completed

Expected output

The average error rate over the 10 days shall be less than
3 entry errors per 8 hours of work

“Fixed” Requirements

 When the temperature rises over
threshold, the alarm must be turned on
within 2 seconds

 New users of the system shall be able to
use the system after 6 hour of training

 Using the system is defined as making less
than 3 entry mistakes per 8 hours of operation

 55

Test Cases for Various Levels

 Requirements Definition

 1. One person must be able to load the boat on the car rack

 Requirements Specification

 1.1 The boat must be lighter than 100 lb.

 1.2 The boat must have handles to help one person lift it

 1.3 The car rack must be padded so the boat can easily slide into
the rack

 1.4 Etc.

 56

Key Points

 57

 Do yourself and the testing group a favor—Develop
Test Cases for Each Requirement

 If the requirement cannot be tested, you most likely
have a bad requirement
 Rewrite so it is testable
 Remove the requirement
 Point out why this is an untestable requirement

 Your requirements and testing effort will be
greatly improved

