
Requirements Basics
The Document and The
Requirements

Sommerville Chapter 4

 1

Announcements

 You should have formed your Team of 2 for the
coursework and informed the TA by email

 Correction - No C++ knowledge required for this
course

 Homework1 is up on the course webpage -
– http://www.inf.ed.ac.uk/teaching/courses/inf2c-se/

 2

Today’s Goals (and next time)

 Understand the requirements problem
 Why are requirements so important

 Get a feel for the structure of a requirements
document
 What goes in there?

 Learn how to write “good”
requirements
 Clear and testable

 Exit criteria

 3

We Need a Software Process

 Structured set of activities required to develop a
software system
 Specification

 Design

 Validation

 Evolution

 Activities vary depending on the organization and
the type of system being developed

 Must be explicitly modeled if it is to be
managed

Process of Building a House

 5

Different Process

Same Life Cycle

Life Cycle and Process

 Life cycle

 Phases necessary to keep the product in existence

 Software process

 Define human activities required to build software

 Who is doing what, when, and how

 Procedure

 A sequential series of steps to be followed by a single individual
to accomplish a task or make a decision

 Process

 A flow of events that describes how something works

 6

Generic Software Process
Models

 The Waterfall Model
 Separate and distinct phases of specification and

development

 Evolutionary Development
 Specification and development are interleaved

 Spiral Model
 Let risk analysis drive your process

 Incremental Development
 Deliver your system in small planned increments

 Agile and eXtreme Programming

 7

Fall 2013CSci 5801 - Dr. Mats P.E. Heimdahl8

The Importance of Good Requirements

Concept
Formation

Requirements
Specification

Design

Implementation

?

?

?

Fall 2013CSci 5801 - Dr. Mats P.E. Heimdahl9

The Importance of Good Requirements

Concept
Formation

Requirements
Specification

Design

Implementation

?

?

?

Most problems here!

Requirements Specification

 High-level description of what a system should do

 Must be detailed enough to distinguish between the
“right” and the “wrong” system

 Capture the what not the how

 The specification process must involve all stakeholders

 Customers

 Engineers

 Regulatory agencies

 Users

 10

Importance of Requirements

 The Engineering Argument

 Engineering is about developing solutions to problems

 A good solution can only be developed if the engineers have a
solid understanding of the problem

 The Economic Argument

 Errors cost more to correct the longer they go undetected

 Cost of correcting requirements errors is (at least) 100 times
more in the maintenance phase than in the requirements phase

 The Empirical Argument

 Failure to understand and manage requirements is the biggest
single cause of cost and schedule over-runs

 11

12

The Cost of Req. Problems

1,000

“Extra times saves
money”, Warren Kuffel,
Computer Language, Dec
1990

1 3
10

15

30

40

1
6

10

40

70

100

0

10

20

30

40

50

60

70

80

90

100

Requirements
Desig

n
Coding

Unit T
est

Acceptance T
est

Operatio
n

Least
Most

Cost Overruns vs. Requirements
Effort

13

% Cost
Overrun

% Effort on Project Scope and
Requirements Engineering

Source: Werner Gruhl, NASA

0

20

40

60

80

100

120

140

160

180

200

0 5 10 15 20

Even Wally Knows

 14

Key Points

 Requirements capture what a proposed system shall do
 But avoids design detail as much as possible

 Written in the user’s language

 Poor requirements are the source of all evil

 Requirements problems are the
 Most costly

 Most difficult to correct (they are conceptual)

 15

Requirements: What Are
They?

 What is a requirements document?
 What is a requirement?

16

The Requirement

 It may range from a high-level abstract statement of a
service or of a system constraint to a detailed mathematical
functional specification

 This is inevitable as requirements may serve a dual function

 May be the basis for a bid for a contract

 Therefore must be open to interpretation

 May be the basis for the contract itself

 Therefore must be defined in detail

 Both these statements may be called requirements

 17

Requirements
Definition/Specification

 Market Requirements Definition (MRD)

 Statements in natural language (plus diagrams) of the services the system
provides and its operational constraints

 Written for customers in their language

 Software Requirements Specification (SRS)

 A structured document setting out detailed descriptions of the system
services

 Written as a contract between client and contractor

 Software Design Description (high-level design)

 A detailed software description which can serve as a basis for a design or
implementation

 Written for developers

 18

Requirements Readers

 19

Market
Requirements
Definition

Software
Requirements
Specification

Software Design
Description

Client engineers
System architects
Software developers

Client managers
System end-users
Client engineers
Contractor managers
System architects

System end-users
Client engineers
System architects
Software developers

Definitions and Specifications

Market Requirements Definition

1. One person must be able to load the boat on the car
rack

(Software) Requirements Specification

1.1 The boat must be lighter than 100 lb.

1.2 The boat must have handles to help one person lift it

1.3 The car rack must be padded so the boat can easily
slide into the rack

1.4 Etc.

 20

Capturing Good Requirements
 21

 3 Common Problems

● Poorly structured requirements document

● Poorly written individual requirements

● Untestable requirements (future lecture)

The Software Requirements
Specification

 The SRS writer shall address the following

 Functionality

 What is the software supposed to do?

 External Interfaces

 How does the software interact with people, the system's hardware, other hardware, and
other software?

 Performance

 What is the speed, availability, response time, recovery time of various software functions,
etc.?

 Attributes

 What are the portability, maintainability, security, etc. considerations?

 Design constraints imposed on an implementation

 Are there any required standards in effect, implementation language, policies for database
integrity, resource limits, operating environment, etc.?

 22

IEEE Std 830-1998

SRS Should not Include

 Project development plans (cost, staffing, schedules, methods, tools,
etc.)

 Lifetime of SRS is until the end of the operational life of the product

 Lifetime of development plans is much shorter

 Product assurance plans (CM, V&V, test, QA, etc.)

 Different audiences

 Different timelines

 Design

 Requirements and design have different audiences

 Analysis and design are different areas of expertise (requirements experts
should not do design)

 Except where the application domain constrains the design, e.g., limited
communications bandwidth or security concerns

 23

IEEE Document Standard

 Portrait slides

 Available on the web page

 24

Requirements Engineering

 The process of establishing the services that the
customer requires from a system and the
constraints under which it operates and is
developed

 Requirements may be functional or non-functional

 Functional requirements describe system services or
functions

 Non-functional requirements is a constraint on the
system or on the development process

 25

Functional Requirements

 A functional requirement is something the
system must do.

 A functional requirement is testable

 A general rule is a functional requirement
is a “shall statement”

– The system shall require users to login
to access all functions.

 26

Functional Requirements

 These can be high level or low level
(generally we’re at high level in this class)

 High level: The system shall charge users
credit cards for purchases

 Low level: The system shall validate all
passwords contain upper and lowercase
characters and one number

 27

Example-Functional Requirements

 Requirements must do ONE THING.

– Bad:
● The system shall accept credit cards and accept pay pal

– Good:
● The system shall accept credit cards
● The system shall accept pay pal.

 • Requirements must be testable. Use precise language.

– Bad:
● The system shall work with any browser

– Good:
● The system shall work with Firefox
● The system shall work with IE

– Bad:
● The system shall respond quickly to user clicks

– Good:
● The system shall respond within 10ms to any user click

 28

Non-Functional Requirements

 Define system properties and constraints

 Reliability, response time and storage requirements

 Constraints are I/O device capability, system representations, etc.

 Process requirements may also be specified mandating a
particular CASE system, programming language, or
development method

 Non-functional requirements may be more critical than
functional requirements

 If these are not met, the system is useless

 29

Non-Functional Classification

 Product requirements

 Requirements which specify that the delivered product must behave
in a particular way

 Execution speed, reliability, etc.

 Organizational requirements

 Requirements which are a consequence of organizational policies
and procedures

 Process standards used, implementation requirements, etc.

 External requirements

 Requirements which arise from factors which are external to the
system and its development process

 Interoperability requirements, legislative requirements, etc.

 30

Non-Functional Requirements
Examples

 Product requirement

 It shall be possible for all necessary communication between
the ATM and the user to be expressed in the standard ASCII
character set.

 Organizational requirement

 The system development process and deliverable documents
shall conform to the process and deliverables defined in
XYZCo-SP-STAN-95.

 External requirement

 The system shall use a file format readable by MS-Word 6.0
and 2000.

 31

Writing Requirements

 Natural language, supplemented by diagrams and
tables is the normal way of writing requirements
definitions

 This is universally understandable but three types of
problem can arise
 Lack of clarity

 Precision is difficult without making the document difficult to read

 Requirements amalgamation

 Several different requirements may be expressed together

 Requirements confusion

 Functional and non-functional requirements tend to be mixed-up

 32

Requirements Samples (NASA)

2.16.3.f

While acting as the bus controller, the C&C MDM CSCI shall set the e, c, w,
indicators identified in Table 3.2.16-II for the corresponding RT to “failed” and set the
failure status to failed for all RT’s on the bus upon detection of transaction errors of
selected messages to RTs whose 1553 FDIR is not inhibited in two consecutive
processing frames within 100 milliseconds of detection of the second transaction
error if; a backup BC is available, the BC has been switched in the last 20 seconds,
the SPD card reset capability is inhibited, or the SPD card has been reset in the last
10 major (10 second) frames, and either

1. the transaction errors are from multiple RT’s, the current channel has been reset
within the last major frame, or

2. the transaction errors are from multiple RT’s, the bus channel’s reset capability is
inhibited, and the current channel has not been reset within the last major frame.

 33

Templates are Essential

 Define a standard document structure

 Readers familiar with the document

 Acts as a checklist so that no sections are forgotten

 Define standard templates for the requirements
description

 Easy to find information

 Nothing will be “forgotten”

 34

Teller Machine Requirement (bad)

35

2.6 Withdrawal
If the card is accepted, the user has entered the correct
PIN, and there are sufficient funds in the account, the
amount of cash shall be dispensed. If the card is invalid
(in which case it should be ejected), the PIN does not
match the one required for the card (in which case a tone
shall sound and the user given the option to try again—
the tries shall be limited to 3), or the balance is
insufficient (in which case a tone shall sound and the
user shall have the opportunity to enter a new amount)
cash shall not be dispensed.

Validate PID Definition

2.6: The System shall support cash withdrawals by
the user

2.6.1: A withdrawal shall be allowed if and only if:

The card can be validated (Req. 2.7)

The PIN is valid for the card (Req. 2.8)

The funds in the card account exceeds the funds requested in the
withdrawal

2.6.2: If a withdrawal is allowed (2.6.1), the exact amount
requested shall be dispensed

 36

Train protection system

● The deceleration of the train shall be
computed as:
– Dtrain = Dcontrol + Dgradient

where Dgradient is 9.81ms2 * compensated
gradient/alpha and where the values of
9.81ms2 /alpha are known for different types
of train.

 38

Requirements Template (suggestion)

Number: A unique requirements number
Use Case: Reference to use case using Req.
Introduction: What is the requirement about?
Rationale: Why is the requirement here?
Source: Who came up with the requirement?
Author: Who wrote it down?
Inputs: What comes in?
Required Function: What is the requirement?
Outputs: What comes out?
Related Reqs: What else is related?
Conflicts: Requirements in conflict with this one
Support Material: Docs., Figures, Tables, Etc.
Test Cases: How do we test the requirement?
Date: When the requirement was modified
Priority: How important is this requirement

Requirements in Forms

 Example available on the web

 39

Four Easy Requirements Guidelines

 Avoid requirements “fusion”

 One requirement per requirement specification

 Be precise

 No vague requirements

 Be rigorous in defining requirements test cases

 If you cannot define how to test if a requirement is satisfied,
you probably have a poor requirement

 Attach a person to each requirement

 People are much less likely to add “the kitchen sink” if their
name is there – no gold plating

 40

Requirements Fusion

2.16.3.f

While acting as the bus controller, the C&C MDM CSCI shall set the e, c, w,
indicators identified in Table 3.2.16-II for the corresponding RT to “failed” and set
the failure status to failed for all RT’s on the bus upon detection of transaction
errors of selected messages to RTs whose 1553 FDIR is not inhibited in two
consecutive processing frames within 100 milliseconds of detection of the second
transaction error if; a backup BC is available, the BC has been switched in the last
20 seconds, the SPD card reset capability is inhibited, or the SPD card has been
reset in the last 10 major (10 second) frames, and either

1. the transaction errors are from multiple RT’s, the current channel has been reset within the
last major frame, or

2. the transaction errors are form multiple RT’s, the bus channel’s reset capability is inhibited,
and the current channel has not been reset within the last major frame.

 41

Vague and Ambiguous
Requirement

 Charge numbers should be validated on-
line against the master corporate charge
number list, if possible.

 42

?
? ?

?

 43

Non-testable Requirement

 If a failure occurs (either internal or
external), an easy to interpret alarm must
be raised quickly.

???????

Each Requirement Must Be

 Correct

 The requirement is free from faults.

 Precise, unambiguous, and clear

 Each item is exact and not vague; there is a single
interpretation; the meaning of each item is understood; the
specification is easy to read.

 Complete

 The requirement covers all aspects of the user function.

 Consistent

 No item conflicts with another item in the specification.

 44

Each Requirement Must Be (Cont.)

 Relevant

 Each item is pertinent to the problem and its solution.

 Testable

 During program development and acceptance testing, it will be
possible to determine whether the item has been satisfied.

 Traceable

 Each item can be traced to its origin in the problem environment.

 Feasible

 Each item can be implemented with the available techniques,
tools, resources, and personnel, and within the specified cost and
schedule constraints

 45

The SRS (as a document) Must Be

 Complete

 All user requirements have been included. Do not forget
abnormal and boundary cases.

 Consistent

 No item conflicts with another item in the specification.

 The requirements shall be at a consistent level of
detail

 Manageable and Modifiable

 Things will change and we must be able to accommodate
the inevitable requirements evolution.

 46

Example 1

 The product shall provide status
messages at regular intervals not less
than every 60 seconds

 Is this a good requirement?

 47

Example 1 Rewritten

1. Status Messages

1.1 The Background Task Manager shall display status
messages in a designated area in the user interface at
intervals of 60 plus or minus 10 seconds.

1.2 If background processing is progressing normally, the
percentage of the background task processing that has been
completed shall be displayed.

1.3 A message shall be displayed when the background task is
complete.

1.4 An error message shall be displayed if the background
task has stalled or failed.

 48

 The product shall switch between
displaying and hiding non-printing
characters instantaneously

Example 2

 49

Example 3

 Charge numbers should be validated on-line
against the master corporate charge number list, if
possible.

 The system shall validate the charge number
entered against the on-line master corporate
charge number list. If the charge number is not
found on the list, an error message shall be
displayed and the order shall not be accepted.

 50

Complete?

1. Validate charge card number

1.1 The system shall validate the charge card
number entered against the on-line master
corporate charge card number list.

1.1.1 If the charge card number is not found on the
list, an error message shall be displayed and the order
shall not be accepted

 51

Completed?

1. Validate charge card number

1.1 The system shall validate the charge card
number entered against the on-line master corporate
charge card number list.

1.1.1 If the charge card number is not found on the list,
an error message shall be displayed and the order shall
not be accepted

1.2 If the on-line master corporate charge card
number list is not available, the order shall not be
accepted.

 52

Incomplete Requirements

 53

Example 4

 The system shall respond to all user
requests within 2 seconds.

 54

Inconsistent Requirements

 Obvious inconsistencies

 If the user selects option X, function Y will be performed

 If the user selects option X, function Z will be performed

 Inconsistency from the driving handbook

 You must obey the speed limit

 You must maintain a speed that is consistent with the
other traffic

 55

Requirements Rationale

 It is important to provide rationale with
requirements

 This helps the developer understand the
application domain and why the requirement
is stated in its current form

 Particularly important when requirements
have to be changed

 The availability of rationale reduces the chances
that change will have unexpected effects

 56

Why Rationale?

Market Requirements Definition

1. One person must be able to load the boat on the
car rack

(Software) Requirements Specification

1.1 The boat must be lighter than 100 lb.

1.2 The boat must have handles to help one person
lift it

1.3 The car rack must be padded so the boat can
easily slide into the rack

1.4 Etc.

 57

Requirements Traceability

 Requirements traceability means that related
requirements are linked in some way and that
requirements are (perhaps) linked to their source

 Traceability is a property of a requirements specification
which reflects the ease of finding related requirements

 Some CASE tools provide traceability support facilities

 For example, they may be able to find all requirements which
use the same terms

 58

Traceability Techniques

 Assign a unique number to all requirements

 Cross-reference related requirements using
this unique number

 Produce a cross-reference matrix for each
requirements document showing related
requirements.

 Several matrices may be necessary for different
types of relationship

 59

Traceability Matrix

 60

ReqID 1.1 1.2 1.3 2.1 2.2 2.3 3.1 3.2

1.1 R

1.2 U U R U

1.3 R R

2.1 R U U

2.2 U

2.3 R U

3.1 R

3.2 R

U = “uses the requirement”, R = “Some other weaker relationship”

When Are We Done??

 When all the stakeholders are happy
 Remember the stakeholders are diverse and more numerous that

you may think

 Customer

 Sales department

 Engineers and developers

 Testers

 Etc.

 The document has passed all inspections and checklists

 All TBD have been closed out

 61

The Use of TBD

 Any SRS using the term “to be determined”
(TBD) is not complete

 TBD is often needed, however

 A description of the condition causing the TBD
(why the issue cannot be resolved)

 A description of what must be done to eliminate
the TBD, who is responsible, and by when it must
be done

 62

HW1 Discussion

Cruise Control System
– Requirements

– Use Cases

– Use Case Diagram (Papyrus Tool)

 63

We Have Learned

 Use a standard document structure and forms for the individual
requirements

 Use checklists to make sure the individual requirements are
“good”

 Use checklists to make sure the document is “good”

 Keep an eye towards the future – things will change

 What requirements are likely to change

 Structure the your requirements accordingly

 Provide rationale and traceability

 Make sure all stakeholders agree on the requirements
document

 64

