
Informatics 2-
Software Engineering

Dr. Ajitha Rajan

Inf2C-SE Term1 20141

Today’s Goals

Understand what Inf2C-SE is all about
 Instructor and teaching model
 What you should already know

Clarify course expectations
 Coursework

Answer any questions
Introduce Software Engineering

2

Teaching Staff

Dr. Ajitha Rajan
 Office: Informatics Forum Room 4.14
 Email: arajan@staffmail.ed.ac.uk

TA: Dr. Allan Clark
 Office: Informatics Forum Room 1.31
 Email: a.d.clark@ed.ac.uk

Class information
 Class web page available at

http://www.inf.ed.ac.uk/teaching/courses/inf2c-
se/

3

Learning Modes
4

Group Discussions

 Coursework
and Lab

Lecture Textbooks

5

Prerequisites

Proficient in C++ and Java
 You should be able to read and write programs

without additional instruction
 This is not a programming language class

Basic understanding of algorithms, logic,
and sets

Coursework and Exam

Final Exam worth 60% of course assessment
● short answers, written on the question paper

Coursework worth 40%
 3 parts
 HW1 - Requirements and use cases (20%) (Due 2nd

October)
 HW2 - Design (30%) (Due 16th October)
 HW3 - Implementation and test (50%) (Due 11th

November)

6

Tutorials and Labs

l There will be 4 tutorials in weeks 2,4,6 and 8.

l Tutorials are meant as a platform for discussions relevant
to your coursework and any clarifications you may have
on Lecture content.

l 12 Tutorial Groups. Check the course web page for
tutorial groups, times and location.

l Lab will be held in week 7 to help with coursework 3.

Week 1 Week 2 Week 3 Week 4 Week 5 Week 6 Week 7 Week 8 Week 9 Wk 10

Tutorials and Labs

l Note about tutorial in Week 2 only:
l Group 4, normally Old College, will be in Room 5.03, AT
l Group 8, normally Old College, will be in Room 5.07 AT
l Group 9, normally Minto House, will be in Room 5.03 AT
l Group 12, normally 24 Buccleuch Pl., will be in Room 5.03 AT
l

l The rest of the groups will stay in the same rooms throughout.
l Note that the above change is for week 2 only and only for

groups 4,8,9 and 12.
l For the remaining weeks the room displayed on the course

webpage is the correct location.

Team Selection

Coursework will be done in teams of 2 people.

Select your team and let the TA know by 23rd
September by email with the names and UUN of
the team members. Only 1 email per team. The
subject of the email should be “Inf2C-SE Team”.

9

Team Selection

Coursework will be done in teams of 2 people.

Select your team and let the TA know by 23rd
September by email with the names and UUN of
the team members. Only 1 email per team. The
subject of the email should be “Inf2C-SE Team”.

10

Expected Workload

We do have a sizeable project, this may be
a lot of work.

Planning and scheduling your time is
essential
 Some deliverables may involve quite a bit of

work
 Make sure you spread out the work
 You will have problems trying to “cram”

CSci 5801 - Fall 2013

11

Books

No book is essential.
The following are worth considering

● Sommerville, Software Engineering
● Comprehensive on SE, but limited on
UML and Java.

● Stevens with Pooley, Using UML
● Covers basic SE, does UML thoroughly,
no Java.

12

13

News and Schedule

Check the course web page regularly for
any updates and announcements for the
course

Review schedule (in preparation) in the
course web page

Questions?

Inf2C-SE Term1 2014 Ajitha Rajan 14

Software Engineering

What is Software engineering?

15

16

What is Software Engineering

As defined in IEEE Standard 610.12:
The application of a systematic, disciplined, quantifiable approach to
the development, operation, and maintenance of software; that is, the
application of engineering to software.

Software Engineering, is also informally defined as, the branch of
computer science that creates practical, cost-effective solutions to
computing and information processing problems.

17

What is Software Engineering

Building software that works
● We know how to build other things.
● Engineering is the discipline that teaches us the methodologies that

work for building complex objects.

Apply engineering techniques to software.
● Know what methodologies work.
● Understand why and how.
● Apply them appropriately and repeatedly.

Software Engineering

 How does software differ from other
engineered systems?

 Copyright Mats Heimdahl18

Typical Engineered Systems

Engineering Process Model

Specification
 Set out the requirements

and constraints on the
system

Design
 Produce a paper model

of the system
Manufacture

 Build the system

Test
 Check the system meets

the required specifications
Install

 Deliver the system to the
customer and ensure it is
operational

Maintain
 Repair faults in the

system as they are
discovered

Software is Different

● Set of constraints is continually changing
– In significant and meaningful ways
– In unknown and unknowable ways
– Priorities are changing

● People expect software to adapt
– More so than anything else

● Software often fails to meet expectations. . .
– yet we intend to build it anyway

● So how do we go about building software?
– This is what software engineering is about.

Software Process Models

Normally, requirements are incomplete and
ambiguous and can change during
development.

Very blurred distinction between
specification, design and manufacture

No physical realization of the system for
testing

Software does not wear out
 Maintenance does not mean component

replacement

Software Engineering Myths

MANAGEMENT
“We have books with rules. Isn’t that everything my people
need?”
Which book do you think is perfect for you?

“If we fall behind, we add more programmers”
“Adding people to a late software project, makes it later” –
Fred Brooks (The Mythical Man Month)

“We can outsource it”
If you do not know how to manage and control it internally,
you will struggle to do this with outsiders

23

Software Engineering Myths

CUSTOMER
“We can refine the requirements later”
A recipe for disaster.

“The good thing about software is that we can change it later
easily”
As time passes, cost of changes grows rapidly

24

Software Engineering Myths

PRACTITIONER
“Let’s write the code, so we’ll be done faster”
The sooner you begin writing code, the longer it’ll take to
finish”
60-80% of effort is expended after first delivery

“Until I finish it, I cannot assess its quality”
Software and design reviews are more effective than testing
(find 5 times more bugs)

“There is no time for software engineering”
But is there time to redo the software?

25

Cartoon

26

Cartoon

27

Cartoon

28

Cartoon

29

Cartoon

30

Cartoon

31

Cartoon

32

Cartoon

33

Cartoon

34

Cartoon

35

Software Engineering

The economies of all developed nations are
dependent on software

More and more systems are software controlled
Software engineering is concerned with theories,

methods and tools for professional software
development

Software engineering expenditure represents a
significant fraction of GNP in all developed countries

 Copyright Mats Heimdahl36

Software Engineering

Designing, building and
maintaining (large) software

systems

CSci 5801 - Fall 2013

37

Software Engineering

What is a Large software?

38

Examples of Large Software

Mozilla Firefox
12 Million Lines of Code
https://www.openhub.net/p/firefox

Facebook
61 Million Lines of Code

Boeing 787 Flight Software
14 Million Lines of Code

Windows Vista
50 Million Lines of Code

CSci 5801 - Fall 2013

39

Check out http://www.informationisbeautiful.net/visualizations/million-lines-of-code/
For a visualisation on size of other software codebases

https://www.openhub.net/p/firefox
http://www.informationisbeautiful.net/visualizations/million-lines-of-code/

40

A Question

Are we any good at building
software?

The Problems

Software projects are struggle in the delivery of final
product

 Standish chaos reports classify software
development projects for medium-large
organisations
 Succeeded

● 1994:16%...2004: 29%...2009:32%
 Challenged (i.e., delivered something but maybe reduced

scope, late, over budget)
● No real trend, around 50%

 Failed (i.e., cancelled without delivering anything)
● 1994:31%...2004: 18%....2009: 24%

41

The Haunting of Software
Bugs
Recent research at Cambridge University (2013, link)
showed that the global cost of software bugs is

around 312 billions of
dollars annually

Cyber attacks are affecting nearly anyone that uses
computers and causing enormous financial damages

 The Love Bug virus (5/2000) ~$8.7 billion
 Flash crash
 http://www.forbes.com/pictures/fmdk45gmjl/sony/

42

http://www.prweb.com/releases/2013/1/prweb10298185.htm

Software BUGs – SPACE disaster

 The reason for the explosion was a software
error (Attempt to convert a 64-bit floating point number,
representing horizontal velocity, to a 16-bit integer failed)

 Financial loss: $500,000,000
 (including indirect costs: $2,000,000,000)

Maiden flight of the
Ariane 5 rocket on the 4th
of June 1996

 Air Transport

software in modern cars
 >100K LOC
2006: error in pump control
software
 128000 vehicles recalled

Radio Therapy Machine
 software error

l 6 people overdosed

Examples of Software Errors

Year 2010 Bug
 30 million debit and credit cards

have been rendered unreadable by
the software bug

link

http://listverse.com/2012/12/24/10-seriously-epic-computer-software-bugs/

46

Why is Software Development
so %$##% Hard? (H)

Why is Software Development
so %$##% Hard? (L)

Complexity
 Software systems are the most complex

artifacts ever created
Invisibility
 We cannot see the progress of the development

Changeability
 Software is “easy” to change

Conformity
 The software will have to be molded to fit

whatever external constraints may be imposed

Copyright Mats Heimdahl 47

Failure in Hardware

CSci 5801 - Fall 2013Mats Heimdahl48

F
a

ilu
re

 R
at

e

Time

Wear out

Break in

Software Failure

CSci 5801 - Fall 2013Mats Heimdahl49

Time

F
ai

lu
re

 R
a

te

Wear out ???

Break in

CSci 5801 - Fall 2013Mats Heimdahl50

How it Really Works (L)

Time

F
ai

lu
re

 R
at

e

Ideal Curve

Actual Curve

Problems added
through side-effects

Bug-fix

Software As Product

More than the executable
 Executable, installation manual, user manual,

requirement documentation, design
documentation, etc.

Intangible
Human-intensive creation
 Trivial manufacturing process (copying)

51

Software Product Attributes
(sample)

Maintainability
 It should be possible for the software to evolve

to meet changing requirements
Dependability
 The software should not cause physical or

economic damage in the event of failure
Efficiency
 The software should not make wasteful use of

system resources
Usability
 Software should have an appropriate user

interface and documentation

Qualities Are in the Eyes of
Beholders

53

Maintainer

Good Documentation
Readable Code
Good Design
Reusability

Customer

Low Cost
Portability
Increased
 productivity

Reliability
Correctness
Efficiency

User

Functionality
Ease of use
Ease of learning

Importance of Product
Characteristics

The relative importance of these
characteristics depends on the product and
the environment in which it is to be used

In some cases, some attributes may
dominate
 In safety-critical real-time systems, key

attributes may be dependability and efficiency
Costs tend to rise exponentially if very high
levels of any one attribute are required

CSci 5801 - Fall 2013Mats Heimdahl55

Efficiency Costs

Cost

Efficiency
Safety
Security
Maintainability

How Software Development Works

CSci 5801 - Fall 2013Mats Heimdahl56

?

?

?

Requirements
Specification

Design

Implementation

Concept
Formation

Common Process

CSci 5801 - Fall 2013Mats Heimdahl57

Implementation

We Need a Software Process

Structured set of activities required to
develop a software system
 Specification
 Design
 Validation
 Evolution

Activities vary depending on the
organization and the type of system being
developed

Must be explicitly modelled if it is to be
managed

CSci 5801 - Fall 2013Mats Heimdahl58

Ethics

We are very dependent on software in
today's world, the dangers of unethical—
immoral-- behaviour of software engineers
have become more apparent.

The ACM and IEEE have written a
Software Engineering Code of Ethics and
Professional Practice:
Http://www.acm.org/about/se-code

59

Ethics

It all seems simple—until you spot the
conflicts. Eg:
Your company depends on a major
contract from Client X. Client X insists you
use Software Y to develop a product (3.08)
on which people's lives depend. You are
not satisfied with Y's correctness, and think
using it might introduce a risk of life-
threatenng failure of the product (1.03).
What do you do?

60

Lecture Plan (approximate)

Requirements
Specification

2 lectures
Design Fundamentals

1 lecture
Design

3 lectures

Coding and version
control

2 lectures

Testing and
Coverage

2 lectures

Reliability and
Maintenance

2 lectures

Process
2 lectures

61

We Have Learned

What Inf2c-se is about
What is expected from you
 Prerequisites
 Workload

What software engineering is
Some of the problems

62

Next Time

Note: No Lecture on Thursday. Next
lecture will be next Tuesday.

1st Tutorial is next week.
The fundamental principles of software
engineering

Requirements and use cases (will be re-
visited in tutorial1).

Read Sommerville Chapters 1 and 4.

