
Design Patterns

Paul Jackson

School of Informatics
University of Edinburgh



Design Patterns

“Reuse of good ideas”

A pattern is a named, well understood good solution to a common
problem.

I Experienced designers recognise variants on recurring
problems and understand how to solve them.

I They communicate their understanding by recording it in
design patterns

I Such patterns then help novices avoid having to find solutions
from first principles.

Patterns help novices to learn by example to behave more like
experts.

2 / 14



Patterns: background and use

Idea comes from architecture (Christopher Alexander): e.g.
Window Place: observe that people need comfortable places to
sit, and like being near windows, so make a comfortable seating
place at a window.

Similarly, software design patterns address many commonly arising
technical problems in software design, particularly OO design

Patterns also used in: reengineering; project management;
configuration management; etc.

Pattern catalogues: for easy reference, and to let designers talk
shorthand.

3 / 14



A very simple recurring problem

We often want to be able to model tree-like structures of objects,
where an object may be

I a thing without interesting structure, a leaf of the tree, or
I itself composed of other objects

I which in turn might be leaves or might be composed of other
objects...

And we want to implement operations on these tree structures that
are uniform in behaviour, whether the trees are single objects or
are composed of multiple objects.

Composite is a design pattern which describes a well-understood
way of doing this.

4 / 14



Example situation I

A graphics library provides primitive graphics elements like lines,
text strings, circles, etc.

A user of the library wants support for operations on elements that
are uniform across different kinds.

I E.g. move, draw, change colour

Makes sense to have a

I classes Line, Text, etc, for each element kind, and

I a Graphics interface or abstract base class that describes the
common features of graphics elements

5 / 14



Example situation II

6 / 14



Example situation III

Further, the user wants to group elements together to form
pictures, which can then be treated as a whole.

I E.g. user expects to be able to move a composite picture just
as they move primitive elements.

And user wants to group pictures and elements together into larger
pictures.

Using e.g.List<Graphics> for type of pictures is not enough.

7 / 14



Composite pattern

8 / 14



Benefits of Composite

I Can automatically have trees of any depth: don’t need to do
anything special to let containers (Pictures) contain other
containers

I Is easy to add new kinds of Graphics subclasses, including
different kinds of pictures, because user programs don’t have
to be altered

9 / 14



A drawback of Composite

Code for each operation is spread around the Graphics subclasses.

I May cause maintenance issues

One solution is to code the operation using a single method that
walks Graphics object trees and has explicit conditional statements
branching on the particular subclass each Graphics object belongs
to.

(Use instanceof operator in Java to test class membership)

Another solution is to use the Visitor pattern.

I Each operation coded using a single class

I One method provided for the case of each Graphics subclass

10 / 14



Variations on Composite

I Might want to write some new method that walks over a
whole Graphics tree. E.g. a tree-map method.

I To support it, need methods in Graphics like numChildren()
and getChild(int i)

I Graphics then provides default implementations of these
methods for the leaf subclasses.

11 / 14



Elements of a pattern

A pattern catalogue entry normally includes roughly:

I Name (e.g. Publisher-Subscriber)

I Aliases (e.g. Observer, Dependants)

I Context (in what circumstances can the problem arise?)

I Problem (why won’t a naive approach work?)

I Solution (normally a mixture of text and models)

I Consequences (good and bad things about what happens if
you use the pattern.)

12 / 14



Cautions on pattern use

Patterns are very useful if you have the problem they’re trying to
solve.

But they add complexity, and often e.g. performance penalties too.
Exercise discretion.

You’ll find the criticism that the GoF patterns in particular are
“just” getting round the deficiencies of OOPLs. This is true, but
misses the point.

(GoF = “Gang of Four”, authors of the first major Design Patterns
book)

13 / 14



Patterns: Reading

Required: Wikipedia entries (or equivalent) on Observer and
Template Method design patterns. What I want you to do is to
know and understand those patterns to the extent that you
could use them, describe them using UML class and sequence
diagrams, and explain what they achieve and how.

Suggested: Read more on design patterns, e.g.

I Stevens: Ch18.2
I Sommerville: Look up design patterns in index
I http://en.wikipedia.org/wiki/Design_Patterns

14 / 14

http://en.wikipedia.org/wiki/Design_Patterns

	Design patterns

