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What is deployment?

Getting software out of the hands of the developers into the hands
of the users.

Some stats:

I More than 50% of commissioned software is not used, mostly
because it fails at deployment stage.

I 80% of the cost of (commissioned) software comes at and
after deployment.

What are the issues that make it hard?
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Is deployment the problem?

Not always.

Often, problems show up at deployment which are actually failures
of requirements analysis.

Such problems can be very hard or impossible to fix, in a large
system. e.g. NPfIT...

However, there are also genuine transition issues.
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Key issues around deployment

I Business processes. Most large software systems require the
customer to change the way they work. Has this been
properly thought through?

I Training. No point in deploying software if the customers
can’t use it.

I Deployment itself. How physically to get the software
installed.

I Equipment. Is the customer’s hardware up to the job?

I Expertise. Does the customer have the IT expertise to install
the software?

I Integration with other systems of the customer.
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Deployment itself

Many people will sell you tools to help deploy software. Such
systems help you to:

I package the software

I make it available (nowadays over Internet or on DVD)
I give the customer turn-key installers, which will:

I check the system for missing dependencies or drivers etc.
I install the software on the system
I set up any necessary licence managers
I . . .
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Maintenance

The process of changing a system after it has been delivered.

Kinds

I Fixing bugs and vulnerabilities:
not only in code, but also design and requirements

I Adapting to new platforms and software environments:
e.g. new hardware, new OSes, new support software

I Supporting new features and requirements:
necessary as operating environments change and in response
to competitive pressures
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Maintenance challenges

I Often a new team has to understand the software

I Development and maintenance often separate contracts:
De-incentivises developers paying attention to maintainability.

I Maintenance work is unpopular: seen as less skilled, can
involve obselete languages

I As programs age, structure degrades and are harder to change:
Not only software itself, also compilers, documentation.
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Software evolution and release management

Discipline in the evolution of software is (at least) as important as
in its development.

I gather change requirements: new features, adapting to
system/business change, bug reports

I evaluate each; produce proposed list of changes

I go through normal development cycle to implement changes –
ensuring that you understand the software, which may be
non-trivial.

I issue new release

Unfortunately, emergencies happen, and things have to be done
with urgency. If at all possible, go through the normal process
afterwards.
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Re-engineering
Re-engineering is the process of taking an old or unmaintainable
system and transforming it until it’s maintainable. This may be
considerably less risky and much cheaper than re-implementing
from scratch.

Re-engineering may involve:

I Source code translation e.g. from obsolete language, or
assembly, to modern language.

I Reverse engineering i.e. analysing the program, possibly in the
absence of source code.

I Structure improvement, especially modularization,
architectural refactoring

I Data re-engineering, reformatting and cleaning up data.
I Adding adaptor interfaces to users and newer other software

Issues:

I What is the specification?
I Which bugs do you deliberately preserve?
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Reading

Suggested: Sommerville on software evolution and maintenance
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