Verification, validation and testing

Paul Jackson

School of Informatics
University of Edinburgh



Verification, validation and testing

“VV&T" generally refers to all techniques for improving product
quality, e.g., by eliminating bugs (including design bugs).

Verification: are we building the software right?
» Does software meet requirements?
Validation: are we building the right software?
» More general. Does software meet customer’s expectations?

Testing is a useful (but not the only) technique for both.

Other techniques useful for verification:

> static analysis

» reviews/inspections/walkthroughs
Other techniques useful for validation:

> prototyping/early release

)

N



“Bug”: or more precisely:

From IEEE610.12-90 (IEEE Standard Glossary of Software
Engineering Terminology):

» Fault: An incorrect step, process, or data definition in a
computer program

» Mistake: A human action that produces a fault
» Failure: The [incorrect] result of a fault

» Error: The difference between a computed result and the
correct result

The common term “defect” usually means fault.



Testing

Testing approaches:

» black box — purely specification-based

» white box — also considers software structure

Kinds of tests:

» Module (or unit) tests: for each class in OO software

Integration tests: test components interact properly

v

v

System tests: check if func & non-func requirements met

Acceptance tests: in customer environment. Validation

v

Stress tests: look for graceful degradation, not catastrohe

v

Performance tests:
> Regression tests: repeating full tests after each modification

v

and many more. i.e., large area: whole third-year course on
testing. Basics only here. For more see SWEBOK.



Why test?

Testing has three main purposes:
» to help you find the bugs
> to convince the customer that there are no/few bugs

> to help with system evolution.

E.g. can help gather information on

» future requirements and priorities,
» performance that previously was only estimated



How to test

Desirable that tests are:

v

repeatable
documented (both the tests and the results)

v

> precise

» done on configuration controlled software

Ideally, test spec should be written at the same time as the
requirements spec.

» Tests and requirement features can be cross-referenced

> Use cases can suggest tests

Helps to ensure testability of requirements.

Now standard practice

6 /22



Evolving tests when they don't catch new bugs

Assume an implementation passes all current tests.

What if a new bug is identified by customer or by code review?

A good discipline is:

o L=

Fix or create a test to catch the bug.

Check that the test fails.

Fix the bug

Run the test that should catch this bug: check it passes

Rerun all the tests, in case your fix broke something else.



Test-first development
The motivating observation: tests implicity define

» interface, and

» specification of behaviour

for the functionality being developed.

Basic idea is

> write tests before writing the code they apply to,

> run tests as code is written,

As a consequence:

» bugs found at earliest possible point

> bug location is relatively easy



Further advantages of test-first development

TFD

1. clarifies requirements: trying to write a test often reveals
that you don't completely understand exactly what the code
should do.

» Discover issues more quickly than if coding first
» Makes coding easier
2. avoids poor ambiguity resolution: if coding first,
ambiguities might be resolved based on what's easiest to
code. This can lead to user-hostile software.

3. ensures adequate time for test writing: If coding first,
testing time might be squeezed or eliminated. That way lies
madness.



Test-driven development

A subtly different term, covers the way that in Extreme
Programming detailed tests replace a written specification.

10/22



Test automation and JUnit

Automation of tests is essential, particularly when tests must be
re-run frequently.

JUnit is a framework for automated testing of Java programs.
Its use is required in Coursework 3.

Lots of sources of help. E.g.:

> http://www.junit.org

> Writing and running JUnit tests from the Eclipse help
documentation, Java Development User Guide, Getting
Started, Basic Tutorial.

» JUnit Tutorial
http://www.vogella.de/articles/JUnit/article.html

Similar frameworks now available for most languages

11/22


http://www.junit.org
http://www.vogella.de/articles/JUnit/article.html

Limitations of testing

» Writing tests is time-consuming
» Coverage almost always limited: may happen not to
exercise a bug.

» Difficult/impossible to emulate live environment
perfectly
> e.g. race conditions that appear under real load conditions can
be hard to find by testing.
» Can only test executable things, mainly code, or certain
kinds of model — not high level design.



Reviews /walkthroughs/inspections

One complementary approach is to get a group of people to look
for problems.

This can:

» find bugs that are hard to find by testing

» also work on non-executable things, e.g. requirements
specification

> tease out issues where the problem is that what's “correct” is
misunderstood

» spot unmaintainable code.

Of course the author(s) of each artefact should be looking for such
problems — but it can help to have outside views too.

For our purposes reviews/walkthroughs/inspections are all the
same; there are different versions with different rules. “Review” for
short.

13 /22



Reviews, key points

A review is a meeting of a few people,

which reviews one specific artefact (e.g., design document, or
defined body of code)

for which specific entry criteria have been passed (e.g., the code
compiles).

Participants study the artefact before the meeting.

Someone, usually the main author of the artefact, presents it and
answers questions.

The meeting does not try to fix problems, just identify them.

The meeting has a fixed time limit.

14 /22



Static and dynamic analysis

Neither testing nor reviews are reliable ways to find subtle technical
problems in code. Formal tool-supported analysis not limited to
specific test cases can help. Roughly

» Dynamic analysis involves running the code (or at least,
simulating it)

» Static analysis does not: the tool inspects the code without
running it.

Both require clear specification of what is being checked. This can
be given generically (“this code does not deadlock”, “no
null-pointer exception will ever be raised”) or in terms of
annotations of the code (“for every class, the class invariant
written in the code will always be true when a public method is

invoked"). Let's look at such annotations.

15 /22



Assertions

Assertions allow the Java programmer to do ‘sanity checks' during
execution of the program.

Suppose i is a integer variable, and we are writing a bit of code
where we ‘know’ that i must be even (because of what we did
earlier). We can write

assert i % 2 == 0;

to check this — if i is odd, an AssertionError exception is raised.

Assertion checking can (and should, for release) be switched off.
Therefore, never do anything with side-effects in an assertion!

16 /22



Preconditions, postconditions, invariants

Common types of assertion:

» Method Precondition: a condition that must be true when a
method is invoked.

» Method Postcondition: a condition that the method
guarantees to be true when it finishes.

» Class Invariant: a condition that should always be true of

objects of the given class.
What does always mean? In all client-visible states: that is,
whenever the object is not executing one of its methods.

17 /22



Java Modeling Language
JML provides

> a richer language for writing conditions than Java boolean
expressions. E.g. quantifiers \forall and \exists.
> special comment syntax for common assertion types.

» Preconditions: //@ requires x > 0;
Postconditions: //@ ensures \result % 2 == 0;
Invariants: //@ invariant name.length <= 8;
General assertions: //@ assert i + j = 12;

vV vVvYyy

An example:

//@ requires x >= 0.0
/*@ ensures JMLDouble

@ .approximatelyEqualTo
Q (x, \result * \result, eps);
ox/
public static double sqrt(double x) {
VAR

}



Dynamic analysis

Running the program with assertion checking turned on is a basic
kind of dynamic analysis. But more is possible.

The tools jmlc, jmlrac etc. compile and run JML-annotated Java
code into bytecode with specific runtime assertion checking.

Required/Recommended Reading: Leavens and Cheon ‘Design by
Contract with JML’, via
http://wuw.eecs.ucf.edu/"leavens/JML//jmldbc.pdf
Section 1 is Required, the rest is Recommended. You should be
able to read and write simple examples, like those in Section 1.

19 /22


http://www.eecs.ucf.edu/~leavens/JML//jmldbc.pdf

Static analysis

NB even type-checking during compilation is a kind of static
analysis!
Static analysis has advanced a lot in recent years, and is much

more practical for relatively “clean” languages like Java than for
e.g. C++ (pointer arithmetic makes everything harder!).

Tools vary in what problems they address, e.g.

» common coding oversights such as failing to check return
values for error codes
» correctness of pre/post-condition specification of methods

» concurrency bugs e.g. race conditions

Think of what most of these tools do as findings bugs, just like
testing. Their methods are not usually sound (every problem
flagged guaranteed to be a real error) or complete (guaranteed to
find every error) — undecidability looms.



Static analysis tools for Java

OpenJML project provides support for static analysis of
JML-annotated programs.

Treats programs as mathematical objects and automatically proves
assertions.

Project also supports dynamic analysis tools.

FindBugs is relatively widely used: looks for bug patterns, code
idioms that are often errors

ThreadSafe from the Informatics spinout Contemplate focusses
on finding concurrency bugs



Reading

Required: GSWEBOK Ch11, on Software Quality (could delay till
after discussion of process)

Required: some JUnit information, see slide above. You must
know how to create and run a JUnit 4 test for a method of a
class - the best way to learn this is to do it.

Required /Suggested: Design by Contract with JML (Section 1
required), see above

Suggested: GSWEBOK Ch5, on Software Testing

Suggested: Stevens Ch19.

Suggested: Sommerville Ch 8 (9th and 10th Ed), Chs 22-24 (8th
Ed)

N
N

N



