
UML class diagrams

Paul Jackson

School of Informatics
University of Edinburgh

The Unified Modeling Language

UML is a graphical language for recording aspects of the
requirements and design of software systems.

It provides many diagram types; all the diagrams of a system
together form a UML model. Three important types of diagram:

1. Use-case diagram. Already seen in use cases lecture.

2. Class diagram. Today.

3. Sequence diagram. In the future.

A class

Book

A class as design entity is an example of a model element: the
rectangle and text form an example of a corresponding
presentation element.

UML explicitly separates concerns of actual symbols used vs
meaning.

Allows same class to appear in multiple diagrams, maybe in
different formats.

Many other things can be model elements: use cases, actors,
associations, generalisation, packages, methods,...

Showing attributes and operations

Compartments for attributes and operations can be optionally
added

Book
title : String
copiesOnShelf() : Integer
borrow(c:Copy)

Syntax for types can be adapted for different programming
languages.

Types and operation argument names can be omitted.

Visibility

Book

+ title : String

- copiesOnShelf() : Integer
borrow(c:Copy)

Can show whether an attribute or operation is

I public (visible from everywhere) with +

I private (visible only from inside objects of this class) with −

(Or protected (#), package (∼) or other language dependent
visibility.)

Association between classes

Classes and Associations are both examples of classifiers in UML.

Objects are instances of classes.

An instance of an association is a link that connects objects that
are instances of the classes at the association end. (e.g. Copy 3 of
War and Peace with War and Peace).

Rolenames on associations

Can show the role that one object plays to the other.

Can use visibility notation + − etc on role names too.

Multiplicity of association

LibraryMember

MemberOfStaff

Book

Copy

Journal

1

1..*

1 0..*

1 0..*

borrows/returns

borrows/returns

borrows/returns
1

0..*

is a copy of

Commas for alternatives, two dots for ranges, * for unknown
number. E.g. each Copy is a copy of exactly one Book; there must
be at least one Copy of every Book.

Navigability

Adding an arrow at the end of an association shows that some
object of the class at one end can access some object of the class
at the other end, e.g. to send a message.

Student Moduleis taking

Crucial to understanding the coupling of the system. NB direction
of navigability has nothing to do with direction in which you read
the association name.

Generalisation

LibraryMember

MemberOfStaff

Usually, corresponds to implementation with inheritance.

Usually can read as is a: e.g., Member of Staff is a Library
Member.

Interfaces

In UML an interface is just a collection of operations, that can be
realised by a class.

Alternative notation for realisation

Identifying objects and classes

Simplest and best: look for noun phrases in the system description!

Then abandon things which are:

I redundant

I outside scope

I vague

I attributes

I operations and events

I implementation classes.

(May need to add some back later, especially implementation
classes: point is to avoid incorporating premature design decisions
into your conceptual level model.)

Similarly, can use verb phrases to identify operations and/or
associations

Identifying classes example

Books and Journals: The library contains books and journals. It
may have several copies of a given book. Some of the books are
for short term loans only. All other books may be borrowed by any
library member for three weeks. Members of the library can
normally borrow up to six items at a time, but members of staff
may borrow up to 12 items at one time. Only members of staff
may borrow journals.

I Eliminate: library, short term loan, member of the library,
week, time

I Left with: book, journal, copy (of book), library member,
member of staff.

Reading

Suggested: Stevens

I Ch 2: Object concepts
I Ch 3: The LIbrary case study

I Includes basics of how to identify classes

I Ch 5: Essentials of class models
I Includes use of CRC cards for class design

I Ch 6: For abstract classes and interfaces

