
Inf2C Software Engineering 2016-17

Coursework 3

Creating an abstract implementation of a
restaurant order-management system

1 Introduction

The aim of this coursework is to implement and test an abstract version of software for
managing orders in a restaurant. This coursework builds on Coursework 1 on requirements
capture and Coursework 2 on design. As needed, refer back to the Coursework 1 and
Coursework 2 instructions.

2 Framework description

2.1 Overview

As a starting point, you are provided with a skeleton implementation and a test framework.
The skeleton implementation includes code for all of the input/output device classes. The
test framework enables test code to distribute input events to input device objects and collect
and check output events generated by output device objects. See Figure 1 for a class diagram
sketch of the framework connected to a demonstration system.

When the framework is configured, there is only one SystemTest object, one EventDis-
tributor object, and one EventCollector object, but there can be many input-capable device
objects such as PassButton objects, and many output-capable device objects such as PassLight
objects.

A test might run as follows:

1. The SystemTest object sends an press() input event to the EventDistributor object by
passing the event as an argument to the sendEvent() method of the EventDistributor
class.

2. Each event includes not only a message but also the name of some particular input-
capable interface device it is associated with. The EventDistributor object passes the
event on to the PassButton object named in the event.

1



Figure 1: Framework Overview
Unless otherwise stated, all associations are 1-1

3. The event is received at the named PassButton object, resulting in the press() method
being invoked on the object.

4. The implementation of this method models how the input event is handled by the
designed system. Here we imagine that it invokes a cancelReadyUp() method in a
SystemCore object which in turn invokes a switchOff() method on a PassLight object.
The class PassLight is an example of a class for output-capable interface devices.

5. The switchOff() method invocation results in output event being created by the PassLight
object and sent to the EventCollector object.

6. The EventCollector object stores the output event received and the thread of control
returns back to the switchOff() method, so the code associated with the system can
execute further.

7. Further execution of system code might generate further output events. The EventCol-
lector object stores all collected output events.

8. When the invocation of sendEvent() on the EventDistributor object finally returns, the
SystemTest code then checks whether the actual output events collected match up with
a sequence of expected output events that were previously stored in the SystemTest
object.

2



2.2 Trigger and non-trigger input events

In general, in the middle of an execution started by some trigger input event such as press(),
the designed system might want to obtain further input data. To support this, the Event-
Distributor code is slightly more complicated than described above. What happens is that a
test first fills an input event queue in the EventDistributor object without any being sent on
to input-capable devices. When all the input events for a test are loaded, the test signals to
the EventDistributor to successively remove input events from this queue and send each on
to the input-capable device it names.

When the core code of the system under test wishes to obtain further input data, it calls
a method in the relevant input-capable device that fetches the next input event stored in
the EventDistributor’s input event queue. As noted in the Coursework 2 instructions, we call
such input events non-trigger input events.

2.3 Abstract interface device classes

The class diagram in Figure 1 does not show relevant parent classes. A more accurate
depiction of the same example is shown in Figure 2.

Here the abstract classes (AbstractDevice, AbstractInputDevice, AbstractIODevice, Ab-
stractOutputDevice) capture common implementation features of input, output and input-
output device classes. The class AbstractInputDevice is an observer class in a realisation of
the Observer design pattern. It enables the EventDistributor class to be designed without
prior knowledge of the specific sub-classes of AbstractInputDevice and AbstractIODevice it
passes information on to.

Ideally AbstractIODevice would inherit code from both AbstractInputDevice and AbstractOut-
putDevice. However, Java does not allow muliple inheritance, so instead AbstractIODevice
has a copy of code introduced in AbstractOutputDevice.

The operation receiveEvent() in AbstractInputDevice and subclasses is for receiving trigger
input events from the distributor and dispatching them to operations for specific event kinds,
e.g. the press() operation in the PassButton class. The operation fetchMatchingMessage() in
AbstractInputDevice is for retrieving non-trigger input events from the distributor.

2.4 Events

The Event class in the provided code is used for both input and output events. An event
contains the following:

1. a timestamp for when the event occurred,

2. a device identifier consisting of a class name and an instance name which together
uniquely identify an interface device associated with the event,

3. a message which has a name and 0 or more arguments. Each argument is a string.

See the Event.java file for further details.

3



Figure 2: Framework Details

4



2.5 Coursework Phases

As a starting point, you are provided with code which includes a generic test framework and
classes for all the interface devices you will need. You then need to implement code that
realises functionality much like that which you explored in Courseworks 1 and 2. Almost all
the code you add will be to new classes that you create. A small amount of code also needs
to be added to the interface device classes you use.

The implementation goals are split into 3 phases:

Phase I This involves adding code for supporting the creation of menus in the office. The
implementation should require writing no more than 100 lines of Java code (excluding
comments and whitespace). Further code is needed for testing. The marking scheme
allows for students to score up to 78% if they complete this phase and progress no
further.

Phase II This is for adding features for supporting the customer interactions with the
system at a restaurant table. The additional code for this phase is maybe 50% larger
than the Phase I code. However, much of the new code required is similar to that
needed for Phase I, as in both cases the features are concerned with building a data-
structure for finite sequences (Lists in Java terminology). The marking scheme allows
for students to score up to 93% for completing Phases I & II.

Phase III This is for adding features involving activity in the kitchen and at the pass. The
amount of code required is comparable to that for Phase II.

The marking scheme allows for students to score up 100% for completing Phases I, II
and III.

The marking scheme emphasises the value of working code, and full marks for a phase are
only obtainable if code fully passes tests during marking.

It is strongly recommended that you complete well all tasks involved with a given phase,
before progressing on to the next. The marking scheme is intended to reward students for
doing this, rather than racing ahead on the coding tasks for later phases, and then only
having time for mediocre work on other tasks.

It is up to each coursework group to decide how many phases they wish to tackle and how
much time they wish to spend on this coursework. The hope is that virtually all students
should be able to complete Phase I within the nominal 20 hour time budget each has for this
coursework. If any coursework groups are finding they are struggling to achieve this, they
are encouraged to contact the course organiser to discuss their situation.

See Section 7 for a full description of the marking scheme.

3 Your tasks

There are several concurrent tasks you need to engage in. These are described in the following
sub-sections.

5



3.1 Construct code

Appendix B describes the use cases that have to be implemented for each of the phases.
Appendix A summarises the interface device classes and Appendix C gives details on the
input and output messages that each interface class handles.

As recommended in the Coursework 2 instructions and on the discussion forum, do
introduce distinct classes for domain entities such as menus, tickets and the rack, do not
put the data-structures for these inside the interface device classes. Also, consider putting
responsibilities for coordinating use case activity and linking together system components
into classes realising the Mediator design pattern, rather than including these responsibilities
in the provided interface device classes. Whatever you decide, be sure to explain your
deceisions in your report (see Section 6.2).

There is no requirement that you stick to the design you produced for Coursework 2.
Follow good coding practices as described in lecture. Consult the coding guidelines from

Google at

https://google.github.io/styleguide/javaguide.html

or Sun at

http://www.oracle.com/technetwork/java/codeconventions-150003.pdf.

A common recommendation is that you never use tab characters for indentation and you
restrict line lengths to 80 or 100 characters. You are strongly recommended to adopt both
these recommendations because it is good practice and, particularly, in order to ensure
maximum legibility of your code to the markers. You should use an indent step of 4 spaces
as in the Sun guidelines rather than the 2 in the Google guidelines, for consistency with the
supplied code.

Unfortunately the default in Eclipse is to use tab characters for indents. See the Course-
work 3 web page for advice on how to set Eclipse to use spaces instead and also how to get
Eclipse to display a right margin indicator line.

To show you know the basics of Javadoc, add class-level, method-level and field-level
Javadoc comments to your Menu class.

3.2 Create unit tests

The provided code includes a class Money for monetary amounts. Monetary amounts are
represented using arbitrary precision decimal numbers. Arithmetic on them is exact. How-
ever, string presentations of them are always rounded and trailing-zero-extended to 2 decimal
places. For example, the amount 0.127 is presented as the string "0.13" and the amount
3.1 as "3.10".

Complete the provided JUnit 4 test class MoneyTest, adding appropriate tests for the
class constructor and each of the methods in the Money class. A single basic test for the
constructor and for each the methods is adequate, though you should add a few more tests to
check that the rounding is correctly done and that formatting of strings always adds trailing
zeroes, as appropriate.

Ensure your tests are commented so it is clear what each is checking.

6

https://google.github.io/styleguide/javaguide.html
http://www.oracle.com/technetwork/java/codeconventions-150003.pdf


3.3 Create system-level tests

Your are expected to use JUnit 4 to create system-level tests that run scenarios of each of
the use cases you implement.

The provided code includes an example system-level test on a demonstration system.
For this design, it doesn’t make much sense to create each test for each use case alone.

In nearly all cases, several use cases will be needed to set up some state, followed by one or
more to observe the state.

Do not run all your tests together in one large single test. Where possible, do test distinct
features and use cases in distinct cases. Also, when a test involves exercising some sequence
of use cases and features, try to arrange that this test is some increment on some previous
test. This way, if the test fails, but the previous test passes, you know immediately there is
some problem with the increment.

You are encouraged to adopt a test first approach, where you write the test for some use
case or feature first before writing the code itself.

Include all your tests as JUnit test methods in the SystemTest class. Feel free to add
extra auxiliary methods that handle repeatedly needed sequences of input and output events;
avoid cut and pasting the same sequences multiple times.

Your SystemTest.java file should serve as the primary documentation for your system-level
tests. To this end, take care with how you structure your test methods and add appropriate
comments.

In addition, in your report (see Section 4.7), add a table cross-referencing your tests and
the use cases each exercises. If you have tests that exercise some features of a use case,
but not others, add a remark about this in the appropriate box in the table, rather than
simply putting an X. In practice, test documentation often cross-references tests to feature
lists, like that you produced for Coursework 1. For simplicity, this is not required in this
coursework.

3.4 Add assertion checking

Nearly all of the use cases have preconditions; assumptions they make about the state of the
system or the input the system receives from actors. For example, the use case to remove a
menu item from the menu, given an ID for that item, might reasonably assume that the ID
provided as input matches the ID of some item in the current menu.

What might your code do if a precondition of a use case is violated?

• It might terminate normally, giving no indication that anything is wrong. The violation
might be due to a bug in the system behaviour prior to the use case or in the code
generating the test input. Possibly the violation may have no adverse effect, but
possibly it might corrupt part of the system state. Either way, the problem might not
be discovered until some time later.

• It might throw some random exception, e.g. a null pointer exception. This signifies
immediately something is wrong, but it could be hard to diagnose the cause.

More generally, methods often have preconditions for their proper behaviour. Often if a
use-case precondition is violated, some method during some execution of the use-case will
also have its precondition violated.

7



A helpful practice is to add checks to your code that use-case preconditions and/or
individual method preconditions are not violated. On detecting a violation, a check could
issue a warning message or throw an exception.

Consider the use case for removing a menu item from the menu. Assume this use case
has a precondition stating that the ID provided as input matches that of some item on the
menu. Consider how this use case executes when an ID is provided that is not on the menu,
and identify a method that could be given a precondition that also is violated in this case.
It is likely that your Menu class will have such a method.

1. Add a precondition check to this method that makes use of a Java assert statement.
Use the syntax

assert condition : message ;

for your check. This incorporates a message object, usually a Java String object, into
the AssertionError object that is thrown if condition is false. This message object gives
information on what caused the condition to be false.

2. Enable assertion checking in your Java runtime system. E.g. run the java command
with the option -ea. If you are using Eclipse, you can add -ea as a VM (Virtual
Machine) argument to test configurations accessible from Eclipse’s Run menu.

3. Add a JUnit test in your SystemTest class that causes this assertion to fail. Make
sure you comment this method appropriately, explaining what is going on.

4. Use the appropriate JUnit @Test annotation for this method in order to check the
AssertionError exception is indeed thrown. Look up the needed annotation in the JUnit
documentation at http://junit.org. Most JUnit 4 tutorials also will explain what
is needed.

3.5 Add logging code

Add logging code to your code using logging support from the standard java.util.logging
package. The provided code for the interface device classes gives examples of the use of this
package. See the AbstractDevice class for how to set up a reference to the test framework
Logger object. See the press() method in the PassButton class for one example of how to
create a log message. Have a brief browse of documentation on the web concerning this
package to get an idea of what is going on with logging.

Your aim is to add enough logging that both you and the markers can follow the flow of
control around your implementation objects and methods when each of your tests is run.

For most methods it will be fine to add just a single logging line at its start. For some it
might be useful to log too when control flow reaches intermediate points in the methods.

The logging messages automatically include the enclosing class and method names. It
therefore can be sufficient for the logging text to be very brief, say just the word Entry,
indicating the logging message is generated at the entry-point of a method, or a string
identifying the particular object the method is called on. All the provided interface device
classes already have logging calls that do just this.

8

http://junit.org


The provided system test framework also writes log messages listing input events, ex-
pected output events and actual output events. If you have a test that fails, it is worth
checking this information to find out why the test failed.

You are required to submit a file of the logging output from running your tests. This
serves as documentation of the dynamic behaviour of your system. You are not otherwise
required to submit any UML sequence diagrams or text descriptions of behaviour. To aid
in making this legible, be sure to generate highly-visible log messages at the start of each of
your tests. See the provided example test for an example of this.

3.6 Keep a project log

Each member of a group is expected to keep and submit their own independent project log.
This is the only task that should be done independently. All other tasks should be completed
jointly.

This project log should contain an entry for each day you spend a significant time on the
coursework. It should contain the following elements.

Plans What are your plans for completing the project? What activities are you going to
do when? What times do you have available? As the project progresses, you can make
plans for how you are going to complete the next individual tasks you have to work
on.

Achievements Describe what you have achieved through each day you put in time on the
coursework. Summarise outcomes of meetings with your partner. Note how much time
you are putting in.

Reflection Has everything gone to plan or not? Were you optimistic or pessimistic? Did
unforeseen issues come up? Are there ways in which you could improve your own
pattern of work or your pattern of work with your project partner? How is your
understanding evolving of the concepts involved in the coursework? Have you resolved
issues that were puzzling you? Do you have new questions you need to find answers
to?

Be sure to consider including remarks on working practices you experiment with. See
Section 4.1.

Do not include details of design and implementation decisions in your log. Instead, refer
to your report for this information. However, note that generally it is appropriate to include
such information in project logs.

Your project log is expected to be no more than 2 or 3 pages. You can edit your project
log in order to improve ease of reading and keep it to length.

Mention in your project log the overall time you have spent on this coursework and give
some idea of how this broke down into different activities.

3.7 Write a report

This report is expected to be significantly shorter than that you produced for Coursework 2.
A title page plus 2 or 3 further pages is fine. The report should have the following sections:

9



Work completed Make clear which phases you have attempted, how complete the code is
for those phases, and the extent to which you believe that code is working properly. A
couple of paragraphs is fine.

UML Class diagram Include the interface-device classes you use and the new classes you
add. Theres no need to represent any of the other provided classes. Do not try to
exhaustively list all the methods and fields of the classes. Instead, only list a few
of the most important ones. As is commonly the convention, do not show fields that
implement associations drawn in the diagram. Do show the navigability of associations
and do include multiplicities on their ends.

High-level design description This could be much the same as what you produced for
Coursework 2. However, only cover the parts you have actually implemented. Be sure
to include discussion of your design decisions. Include remarks about how your design
might have changed since Coursework 2.

There is no need to provide further documentation on any of your classes, as was
requested in Coursework 2.

Implementation decisions Discuss the main implementation decisions you have made.
For example, state the kind of Java collection class you have used to implement each
of the one-to-many associations in your design, and explain why.

Tests The report need only include a table cross-referencing your tests and the use cases
they exercise. See Section 3.3. Otherwise, the markers should find all your test docu-
mentation in your provided SystemTest.java and MoneyTest.java files.

4 Practical details

4.1 Working practices

This coursework is a small-scale opportunity to try out ideas that have been mentioned in
lectures. For example, you could try writing tests before code and using the tests to drive
your design work. You could also try pair programming.

You are strongly encouraged to take an incremental approach, adding and testing features
one by one as much as possible, always maintaining a system that passes all current tests.

Sometimes it is seen as important to have development teams and testing teams distinct.
This way there are two independent sets of eyes interpreting the requirements, and problems
found during testing can highlight ambiguities in the requirements that need to be resolved.
As you work through adding features to your design, you could alternate who writes the
tests and who does the coding.

4.2 Getting started

Download the test framework and demonstration system zip file rom-demo.zip from the
Coursework 3 web page:

http://www.inf.ed.ac.uk/teaching/courses/inf2c-se/Coursework/2016/cw3.html

10

http://www.inf.ed.ac.uk/teaching/courses/inf2c-se/Coursework/2016/cw3.html


This can be placed anywhere, a temporary directory for example.
Unzip the file. This creates a top-level directory ROMSDemo containing sub-directories

src, bin, lib and data.
The code can be compiled and run from the command line. First cd to the ROMSDemo

directory. Then run:

export CLASSPATH=bin:lib/junit.jar:lib/org.hamcrest.core_1.3.0.v201303031735.jar

javac -sourcepath src -d bin src/roms/*.java

java roms.AllTests

Instructions on how to import this code into Eclipse are available from the Coursework
3 web page.

4.3 Provided code

The provided code includes the following.

• A full implementation of the event-passing test framework introduced in Section 2.

• Virtually complete implementations of all the device interface classes needed for all
three implementation phases.

• A demonstration system implementation which is put together in the method setup-
System() in the SystemTest.java file. This system is essentially that shown in Figures 1
and 2.

• A system-level test that exercises the demonstration implementation. This is defined
by JUnit test method cancelReadyUpLight() in SystemTest.java.

You are strongly recommended to study carefully this demonstration design and the test
provided for it.

Note that the demonstration design creates interface device objects for all three phases.
You should not need to create any further device objects. If you are working on Phase I or
Phase II, you will have unused interface device objects. This is fine. Just ignore them. Do
not alter the instance names assigned by the demonstration code to these interface device
objects. Auto-marking tests will assume your design uses these names and will fail if you
change any names. Also note that this code introduces IDs for each table which, if you get
to Phase III, should be included on the tickets printed at the pass printer.

4.4 Modes of testing

There are three test files.

• SystemTest.java defines a basic JUnit 4 system-level test of the provided demonstration
system. You should put your own system tests in this file.

• MoneyTest.java is for JUnit unit tests of the Money class.

• AllTests.java defines a JUnit test suite grouping together the tests in the SystemTest
and MoneyTest classes.

11



In Eclipse you can run individual JUnit tests in either SystemTest.java or MoneyTest.java,
all tests in one of these files, or all tests in both files using the JUnit test suite defined in
AllTests.java.

There are also options for running the AllTests class as a Java application, as it defines a
static main method. Two of the options are as follows.

1. If it is run as above, where it is passed no arguments, it calls a JUnit test runner and
all tests in the test suite are run.

2. If it is run with one argument, that argument specifies files for input data and expected
output data. Example data files are provided in the data subdirectory. Run

java roms.AllTests data/cancelReadyUpLight

to read in the input event file data/cancelReadyUpLight.in.txt and compare the re-
sults with the expected output event in file data/cancelReadyUpLight.expected.txt.
This is the same demonstration system test as is defined in SystemTest.java. This data
directory also includes some basic tests for each of the implementation phases.

• For Phase I: addShowMenu.*

• For Phase II: addShowTicket.* and addTicketPayBill.*.

• For Phase III: addTicketsShowRack.*.

You are strongly recommended to check that your implementation passes the relevant
tests.

4.5 Modifying provided classes

The following sections describe the provided files you can modify. Do not modify any other
provided classes and do not change the package name the provided code uses.

4.5.1 Device interface classes

All input-capable device classes have a method for each kind of trigger input event they can
receive, which gets called on event reception. For example, the PassButton class has a press()
method.

You need to customise each of these methods to determine what behaviour your system
should exhibit for each of these input event kinds. For example, they might send call messages
to other objects in your implementation, they might call methods in the same class for
generating output events, or both. For communication with other objects you need to add
associations from these device classes to the message destination classes. You also need to
add method calls which generate the call messages to objects in these destination classes.
All such customisation of the device classes should be done within the areas indicated by
comments in these classes. You should not have to modify any code outside of these areas.
If you feel the need to, please first discuss what you wish to do with the course organiser.

12



4.5.2 Domain entity classes

Skeleton Menu, Ticket and Rack classes are provided which include dummy implementations
of methods required by output-capable interface device classes. You have to provide proper
implementations of these methods and can add whatever fields and other methods you wish.

Comments in these files indicate the regions in which you should place your code. Again,
you should not have to modify any code outside of these areas. If you feel the need to, please
first discuss what you wish to do with the course organiser.

4.5.3 Test classes

You should implement tests in the provided SystemTest and MoneyTest classes, and also
include code for building your system in the SystemTest class.

4.6 Singleton classes

Several of your classes might be singleton classes; there might be only one object of its type
created. Do not do anything special to realise the Singleton design pattern. For example, do
not use static fields to hold the singleton’s data or a static field to refer to a single instance
of the class. Just create one instance of the class when setting up your system.

A special case is the Clock class. See the next section.

4.7 The Clock class

A single object of the provided class Clock holds the current test-time, a time determined by
the time-stamp of the most recent event sent into your system. The method getDateAnd-
Time() can be run on this object to retrieve a java.util.Date object holding this time.

The Clock class implements the Singleton design pattern by using a static field to hold
the Clock instance. A static method initialiseInstance() creates a new instance and the static
method Clock.getInstance() retrieves this instance. This approach is taken for convenience.
It allows any method in any class to retrieve the current time without the method or the
object it is called on having to have an explicit reference to the clock.

See the Clock file, in particular the comment at the class start, for more about this class.

5 Good Scholarly Practice

Please remember the University requirement as regards all assessed work for credit. Details
and advice about this can be found at:

http://web.inf.ed.ac.uk/infweb/admin/policies/academic-misconduct

and links from there. Note that, in particular, you are required to take reasonable measures
to protect your assessed work from unauthorised access. For example, if you put any such
work in some web repository, then you must ensure that access is restricted to only members
of your coursework group. Be aware that not all free repository hosting services support
private repositories, repositories with access restrictions. There are some more details about
this on the Coursework web page.

13

http://web.inf.ed.ac.uk/infweb/admin/policies/academic-misconduct


6 What to submit

6.1 Working code, tests and an output log

Your code must compile and run from a DICE command line, as described above in Sec-
tion 4.2. This is essential for the auto-marker. Please be aware that the default ECJ compiler
used in Eclipse is a different compiler from the command line javac compiler. ECJ will com-
pile and run code that javac will not compile.

Auto-marking will use Java 1.8.
Do not use any libraries outside of the standard Java 1.8 distribution other than the

JUnit libraries provided in the lib subdirectory.
Create a zip file src.zip of your code and tests by setting your current directory to the main

project directory containing the src, bin, lib and data directories, and running the command

zip -r src.zip src

Capture the output of running your JUnit tests using the command

$ java -ea roms.AllTests &> output.log

as described above in Section 4.4. This output.log file is a required part of your submission.

6.2 Report

This should be a PDF file named report.pdf. Please do not submit a Word or Open Office
document.

If you are using draw.io to draw diagrams, export your diagrams as PDFs, not as bit-maps
(e.g. .png files). Make sure your PDF is viewable using the evince application on a DICE
machine. The report should include a title page with names and UUNs of the team
members.

6.3 Project log

Keep this as say a Word or Open Office document, but convert it to PDF for submission.
Each member of a group should name their project log project-log.pdf and should submit it
separately. See the submission instructions below.

6.4 A team members file

Create a text file named team.txt with only the UUNs of the team members (one UUN on
each line) as shown,

s1234567

s7891234

14



7 Marking Scheme

1. Code quality: Use of coding standards, ease with which code can be read and un-
derstood. Use of Javadoc for Menu class. (10%)

2. Report: This mark is based on the quality of the design and implementation infor-
mation. The requested test table is assessed as part of the next mark. (35%)

3. System test quality: How complete are your tests? How easy is it to read and
understand your tests? Did you include a test of the assert statement, as requested?
(25%)

4. Code output log: Is it easy to follow the execution of your use cases by reading the
log along with your class diagram? (5%)

5. Code correctness and completeness: This will be assessed by auto-marking, fol-
lowed by a review of the auto-marking results. Auto-marking will be more thorough
than the provided tests for each of the phases. It will only test use-case features
described in this or previous Coursework handouts.

Auto-marking will determine a scaling factor that will be applied to the previous 4
items. For example, the factor will be:

• 0.3 if no tests pass,

• 0.7 if all Phase I tests pass,

• 0.9 if all Phase I & II tests pass,

• 1.0 if all tests pass.

6. Project log: (20%)

7. Quality of unit tests. These are the tests of the Money class you insert in the
MoneyTest class. (5%)

Given the auto-marking-based scaling scheme, the maximum possible coursework mark
is:

• 48% if no tests pass,

• 78% if all Phase I tests pass,

• 93% if all Phase I & II tests pass,

• 100% if all tests pass.

15



8 How to submit

Each member of a group has to submit some files.
Ensure you are logged onto a DICE computer and are at a shell prompt in a terminal

window. Place all the requested files in the same directory and cd to this directory.
Only one group member should submit the code, output log and report. That group

member should run the command

submit inf2c-se 3 src.zip output.log report.pdf project-log.pdf team.txt

If the group has two members, the second group member should run the command

submit inf2c-se 3 project-log.pdf team.txt

This coursework is due

16:00 on Tuesday 29th November

The coursework is worth 50% of the total coursework mark and 20% of the overall course
mark.

16



A System interface devices

A complete set of interface device classes is shown in Table 1.

Phase Name Kind Description
I OfficeKVM IO Keyboard, video display and mouse for office computer
II TableDisplay IO Touch-screen display for a table

CardReader IO Contactless card reader
BankClient IO Internet connection for card payment processing
ReceiptPrinter O receipt printer

III Clock I Trigger for timed tasks
KitchenDisplay IO Large touch-screen display in kitchen
TicketPrinter O Ticket printer at the pass
PassLight O Order ready-up light at the pass
PassButton I Press button for cancelling ready-up light

Table 1: Interface device classes

B Use cases to realise

The use cases listed here and their numbering are the same as in the Coursework 2 handout.
Each description lists a use-case name, the primary actor triggering the use case, the message
kinds for the input and output events involved, and sometimes adds some extra remarks.
Only main success scenario or scenarios need to be realised.

B.1 Phase I

In the office. All messages here only involve the OfficeKVM object.

• 4(a) ShowOfficeMenu. (HeadChef ). showMenu (I), viewMenu (O).

• 4(b) AddToMenu. (HeadChef ). addToMenu (I). This input event specifies a menu ID
for each menu item. Several kinds of output event use menu IDs to name menu items
and order ticket items.

• 4(c) RemoveFromMenu. (HeadChef ) removeFromMenu (I). A menu ID is used to indi-
cate which item to remove.

B.2 Phase II

At a table. Unless otherwise stated, all use cases here only involve a TableDisplay object.

• 1(a) StartOrder. (Customer) Create new empty order ticket.

• 1(b) ShowTableMenu. (Customer). showMenu (I), viewMenu (O). Display menu items
along with IDs.

• 1(c) ShowTicket. (Customer). showTicket (I), viewTicket (O). Display order items
along with a menu ID and a count for each.

17



• 1(d) AddToTicket. (Customer). addMenuItem (I). Add one count of a menu item to
the ticket. A menu ID is used to indicate what to add. There are two MSSs here,
depending on whether the item is already named on the ticket.

• 1(e) RemoveFromTicket. (Customer). removeMenuItem (I). Take away one count of a
menu item from a ticket. A menu ID is used to indicate which item to take away.

• 1(f) SubmitOrder. (Customer). submitOrder (I). Tickets should be assigned a Ticket
number on submission, starting from 1. These ticket numbers then are used in the
ticket rack display to name tickets.

• 1(g) PayBill. (Customer). payBill (I), approveBill (O), acceptCardDetails (I), makePay-
ment (O), acceptAuthorisationCode (I), TakeReceipt (O). This use case also involves a
CardReader object, the BankClient object and a ReceiptPrinter object.

B.3 Phase III

In the kitchen and at the kitchen pass.

• 2(a) ShowRack. (Clock). tick (I), viewRack (O). Involves the Clock and KitchenDisplay
objects.

• 2(b) IndicateItemReady. (Chef ). itemReady (I), takeTicket (O), viewSwitchedOn (O).
If item is first of an order, print an order ticket. If last, switch on ready-up light.
Items are selected using a combination of a ticket number and a menu ID. Involves the
KitchenDisplay, PassLight and TicketPrinter objects.

• 3(a) CancelReadyUpLight. (Waiter). press (I), viewSwitchedOff (O). In this and the
previous use case, the light output messages should not take account of the current
state of the light. If a light is told to switch off and it is already switched off, it
should still send out a viewSwitchedOff message. Involves the PassButton and PassLight
objects.

C Message processing by I/O devices

This appendix documents the input and output message processing for the input/output
devices.

This processing is sufficient to support all use cases in all three phases. You should not
add any further processing. We use the abbreviations TI for triggering input, NTI for non-
triggering input and O for output. The format of the processing information for each of the
three kinds of messages is as follows.

TI Triggering input message name and arguments
Declaration for handling method in device class

Declaration for method in device class that fetches input event
NTI Input message name and arguments

Declaration for method in device class that generates output

18



O Output message name and arguments

Input and output message arguments are always strings, so their types are not explicitly
shown.

C.1 Output message argument formatting

Several methods generating output messages add some kind of formatting. For example
constant strings are included that explain values included in the output string sequences. A
common kind of formatting used considers the output string sequence as a series of tuples,
with each tuple printed on a separate line and with corresponding tuple elements aligned
vertically. For example, the displayMenu(Menu menu) method in the OfficeKVM class initially
generates a list of strings for the menu using a toStrings() method on the menu object. This
might generate the list of strings

"D1", "Soft Drink", "1.50", "D2", "Wine", "3.25"

The displayMenu() method adds formatting information to this list, inserting the following
strings as the arguments of the generated viewMenu() message.

"tuples", "3", "ID", "Description", "Price", "D1", "Soft Drink", "1.50",

"D2", "Wine", "3.25"

The Event class toString() method then formats the whole output event as:

1 19:15, OfficeKVM, okvm, viewMenu, tuples, 3,

ID, Description, Price,

D1, Soft Drink, 1.50,

D2, Wine, 3.25,

Below some hints are given about the formatting. For further information, read the code
of the output message generating methods and of the provided domain entity classes that
define toStrings() methods.

C.2 Phase I

In the office.

OfficeKVM
TI showMenu()

void showMenu()

displayMenu(Menu menu)
O viewMenu(”tuples”,”3”,”ID”, ”Description”, ”Price” + triples)

TI addToMenu(menuID, description, price)
void addToMenu(String menuID, String description, Money price)

19



TI removeFromMenu(menuID)
void removeFromMenu(String menuID)

C.3 Phase II

At a table.

TableDisplay
TI startOrder()

void startOrder()

TI showMenu()
void showMenu()

void displayMenu(Menu menu)
O viewMenu(”tuples”,”3”,”ID”, ”Description”, ”Price” + triples)

TI showTicket()
void showTicket()

void displayTicket(Ticket ticket)
O viewTicket(”tuples”,”3”, ”ID”, ”Description”, ”Count” + triples)

TI addMenuItem(menuID)
void addMenuItem(String menuID)

TI removeMenuItem(menuID)
void removeMenuItem(String menuID)

TI submitOrder() : void
void void submitOrder()

TI payBill()
void payBill()

CardReader
String waitForCardDetails()

NTI acceptCardDetails(cardDetails)

BankClient
String authorisePayment(String cardDetails, Money amount)

O makePayment(cardDetails, amountString)
NTI acceptAuthorisationCode(authorisationCode)

ReceiptPrinter

20



void printReceipt(Money total, String authCode)
O takeReceipt(”Total:”, totalStr, ”AuthCode:”, authCode)

C.4 Phase III

In the kitchen and at the kitchen pass.

Clock
TI tick()

void tick()

KitchenDisplay
TI itemReady(ticketNumberString, menuID)

void itemReady(int ticketNumber, String menuID)

void displayRack(Rack rack)
O viewRack(”tuples”,”6”, ”Time”,”Ticket#”, ”MenuID”,”Description”, ”#Ordered”,”#Ready”

+ 6-tuples)

TicketPrinter
void printTicket(Ticket ticket)

O takeTicket(”tuples”,”3”, ”Table:”, tableID, ” ”, ”MenuID”, ”Description”, ”Count” + triples)

PassLight
switchOn()

O viewSwitchedOn()

switchOff()
O viewSwitchedOff()

PassButton
TI press()

void press()

Paul Jackson. v1: 14th November 2016, v5: 27th November 2016.

21


	Introduction
	Framework description
	Overview
	Trigger and non-trigger input events
	Abstract interface device classes
	Events
	Coursework Phases

	Your tasks
	Construct code
	Create unit tests
	Create system-level tests
	Add assertion checking
	Add logging code
	Keep a project log
	Write a report

	Practical details
	Working practices
	Getting started
	Provided code
	Modes of testing
	Modifying provided classes
	Device interface classes
	Domain entity classes
	Test classes

	Singleton classes
	The Clock class

	Good Scholarly Practice
	What to submit
	Working code, tests and an output log
	Report
	Project log
	A team members file

	Marking Scheme
	How to submit
	System interface devices
	Use cases to realise
	Phase I
	Phase II
	Phase III

	Message processing by I/O devices
	Output message argument formatting
	Phase I
	Phase II
	Phase III


