Lecture 11: Exceptions & processor
management

" Exceptions

= Operating system’s main task:
Processor management

Inf2C Computer Systems - 2013-2014

Exceptions — definition

" Exceptional events that interrupt normal
program flow and require attention of the CPU

= External ("interrupts’) — not caused by
program execution
— E.g. 1/0O interrupt

= Internal ("traps) — caused by program
execution
— E.g. illegal instruction

arithmetic overflow

Inf2C Computer Systems - 2013-2014

Exception mechanism

= Step 1: Save the address of current instruction

— 1nto a special register, the exception program counter (EPC)
= Step 2: Transfer control to the OS at a known address
= Step 3: Handle the interrupt

— Deal with the cause of the exception
— All registers must be preserved, similar to a procedure call
= Step 4: Return to user program execution

— Handler restores user program’ s registers and jumps back
using EPC: special instruction eret

Inf2C Computer Systems - 2013-2014

Exception handling

" What caused the exception?
— “Cause” register records the reason, or
— Jump to a specific address depending on the

exception (vectored interrupt)

" For a critical time while the interrupt is being
handled, other interrupts should not happen
— Otherwise the EPC, Cause will be overwritten

— This 1s forced by masking interrupts, by setting the
exception level (EXL) bit in the status register

Inf2C Computer Systems - 2013-2014

Sottware Exceptions

= Use exception mechanism to request some OS
functions

e.g., I/O, dynamic memory allocation

= User program uses syscal | instruction

— Cause register 1s set with a special value to i1dentity the
syscall exception

— OS exception handler 1s invoked as usual

" Parameters are passed to the OS through agreed
upon registers

Inf2C Computer Systems - 2013-2014

Kernel vs. User Mode Protection

= Why make system calls through the exception mechanism
rather than through normal procedure calls?

— CPU has dual mode of operation identified by a bit in status reg.

— Exception mechanism 1s used to force the protection mode to
change from user to kernel (OS) for execution of OS functions

2 “Privileged” instructions only executed in kernel mode

— E.g. accessing 1/O devices, handling virtual memory

= Kernel mode can only be entered through an exception

— User programs cannot jump to OS instruction space

= eret instruction sets mode back to previous mode

Inf2C Computer Systems - 2013-2014

& -
Dine

Advantages of Dual Mode architecture

Guarantees that control 1s invariably transferred to OS
when user programs attempt to perform potentially
dangerous tasks

Ensures that user programs do not have indefinite control
of the processor (e.g., Windows 3.1 and 95 versus
Windows NT & later)

Allows OS to ensure that programs do not interfere with
each other (e.g., that memory 1s divided appropriately)

Allows OS to ensure that programs do not have access to
resources for which they do not have permission

Inf2C Computer Systems - 2013-2014

Managing the Processor

" Problem:
— I/0O takes too long — processor idle
— User programs can crash or monopolize the CPU,
unintentionally or maliciously
= Solution:

— Multiplex or time-share the CPU and other resources among
several user processes

— Switch from one process to another when it performs I/0O,
or when it’ s time allocation (timeslice) expires
11 . . 7 . .
Process: a program in execution (Silberschatz, Galvin,

Gagne)

Inf2C Computer Systems - 2013-2014

Multi-tasking

= Single-task system:

waiting for I/O
processor idle

process
running

process
/ / running
system call for I/O I/O completion (interrupt)

" Multi-tasking system:

OS interrupt handler

OS interrupt handler

/ running / running
I
process 1 process 2 Process 1
running / running / running
system call for I/O I/O completion

Inf2C Computer Systems - 2013-2014

Process States

States:

RUNNING: process is currently running
1/0 COMPLETION in the CPU

— READY: process is not running, but could
run if brought into CPU
BLOCKED BLOCKED: process is not able to run
because it is waiting for I/O to finish
DISPATCH

Transitions:

1/O REQUEST
TIMEOUT I/O REQUEST: process initiates I/O

I/O0 COMPLETION: I/0 finishes
DISPATCH: OS moves process into CPU
and it starts executing

TIMEOUT: process s timeslice is over
(only in pre-emptive multi-tasking
systems)

Inf2C Computer Systems - 2013-2014 10

Process States

= Step 1: process calls the OS, or interrupt occurs
e.g. because of timer
o.b ft
= Step 2: OS’ s dispatcher performs context-switch:
— Process’ s context is saved (registers, PC, etc) in process control

block (PCB)
— Dispatcher chooses new process to run
— Processes’ states are updated
PCB: OS data structure containing each process s
information:
— Process id (PID)
— Process state (blocked, running, etc)
— Process priority
— Process permissions

NlVy
3
“ - — C

A
~ n 3
~ .
(o] ko
<]

Inf2C Computer Systems - 2013-2014 11

Creating and Destroying Processes

= New processes can be explicitly created by the
user, or implicitly by another process

= Original process — parent
New process — child

= Processes are managed by the OS “kernel

— Process dispatcher chooses which process to run next
from the pool of active processes

Inf2C Computer Systems - 2013-2014

12

OS Kernel

" Kernel: (small, etficient)
— Interrupt handling
— Process creation and destruction
— Process state switching
— Memory management
— Inter-process communication and synchronization

— 1/O support

Inf2C Computer Systems - 2013-2014

13

Suspending and Resuming Processes

= Problem:

— Memory may not be enough for all active processes (more on
this in other lectures)

— Some processes have higher priority and must run at the
expense of others
= Solution:

— Processes can be “swapped out” from memory to disk (i.e.,
data is moved to disk)

. ‘6. . ”
— Such processes are moved into an inactive state (2 new
process states)

— PCB of inactive processes are still kept in OS memory

. 11 . .
— Inactive processes are resumed by swapping in the data
from disk back to memory

Inf2C Computer Systems - 2013-2014

14

Suspending and Resuming Processes

I/0 COMPLETION

—

BLOCKED ACTIVE

STATES
DISPATCH
TIMEOUT I/0 REQUEST

SUSPEND

RESUME
RESUME

SUSPEND INACTIVE

STATES

SUSPENDEIT

V_/

I/O0 COMPLETION
Inf2C Computer Systems - 2013-2014

15

