
Lecture 11: Exceptions & processor 
management

Exceptions
Operating system’s main task:                                  

Processor management

Inf2C Computer Systems - 2010-2011



Inf2C Computer Systems - 2010-2011 2

Exceptions – definition 

Exceptional events that interrupt normal 
program flow and require attention of the CPU
External (“interrupts”) → not caused by 
program execution
– E.g. I/O interrupt

Internal (“traps”) → caused by program 
execution
– E.g. illegal instruction

arithmetic overflow



Inf2C Computer Systems - 2010-2011 3

Exception mechanism
Step 1: Save the address of current instruction
– into a special register, the exception program counter (EPC)

Step 2: Transfer control to the OS at a known address
Step 3: Handle the interrupt
– Deal with the cause of the exception
– All registers must be preserved, similar to a procedure call

Step 4: Return to user program execution
– Handler restores user program’s registers and jumps back 

using EPC: special instruction eret



Inf2C Computer Systems - 2010-2011 4

Exception handling

What caused the exception?
– “Cause” register records the reason, or
– Jump to a specific address depending on the 

exception (vectored interrupt)
For a critical time while the interrupt is being 
handled, other interrupts should not happen
– Otherwise the EPC, Cause will be overwritten
– This is forced by masking interrupts, i.e. resetting an 

enable bit in a status register



Inf2C Computer Systems - 2010-2011 5

Software Exceptions

Use exception mechanism to request some OS 
functions 
e.g., I/O, dynamic memory allocation

User program uses syscall instruction
– Cause register is set with a special value to identify the 

syscall exception
– OS exception handler is invoked as usual

Parameters are passed to the OS through agreed 
upon registers



Inf2C Computer Systems - 2010-2011 6

Kernel vs. User Mode Protection
Why make system calls through the exception mechanism 
rather than through normal procedure calls?  
– CPU has dual mode of operation identified by a bit in status reg.
– Exception mechanism is used to force the protection mode to 

change from user to kernel (OS) for execution of OS functions

“Privileged” instructions only executed in kernel mode
– E.g. accessing I/O devices, handling memory, etc

Kernel mode can only be entered through an exception
– User programs cannot jump to OS instruction space

eret instruction sets mode back to previous mode



Inf2C Computer Systems - 2010-2011 7

Security and Stability
Requires combination of hardware and OS
Hardware must:
– Guarantee that control is invariably transferred to OS when user

programs attempt to perform potentially dangerous tasks
– Guarantee that user programs do not have indefinite control of 

the processor (e.g., Windows 3.1 and 95 versus Windows NT)

OS must:
– Guarantee that programs do not interfere with each other (e.g., 

divide memory appropriately)
– Guarantee that programs do not have access to resources for 

which they do not have permission (e.g., files)



Inf2C Computer Systems - 2010-2011 8

Managing the Processor
Problem:
– I/O takes too long → processor idle
– User programs can crash or monopolize the CPU, 

unintentionally or maliciously

Solution:
– Multiplex or time-share the CPU and other resources among 

several user processes
– Switch from one process to another when it performs I/O, 

or when it’s time allocation (timeslice) expires

Process: “a program in execution” (Silberschatz, Galvin, 
Gagne)



Inf2C Computer Systems - 2010-2011 9

Multi-tasking
Single-task system:

Multi-tasking system:

process
running

system call for I/O

waiting for I/O
processor idle

I/O completion (interrupt)

process
running

process 1
running

system call for I/O

OS interrupt handler
running

I/O completion

Process 1
running

process 2
running

OS interrupt handler
running



Inf2C Computer Systems - 2010-2011 10

Process States

READY BLOCKED

RUNNING

I/O COMPLETION

I/O REQUEST

DISPATCH

TIMEOUT

States:

RUNNING: process is currently running 
in the CPU
READY: process is not running, but could 
run if brought into CPU
BLOCKED: process is not able to run
because it is waiting for I/O to finish

Transitions:

I/O REQUEST: process initiates I/O
I/O COMPLETION: I/O finishes
DISPATCH: OS moves process into CPU 
and it starts executing
TIMEOUT: process’s timeslice is over 
(only in pre-emptive multi-tasking 
systems)



Inf2C Computer Systems - 2010-2011 11

Process States
Step 1: process calls the OS, interrupt is requested (e.g. 
timer)
Step 2: OS’s dispatcher performs context-switch:
– Process’ context is saved (registers, PC, etc) in process control 

block (PCB)
– Dispatcher chooses new process to run
– Processes’ states are updated

PCB: OS data structure containing each process’ information:
– Process id (PID)
– Process state (blocked, running, etc)
– Process priority
– Process permissions
– etc



Inf2C Computer Systems - 2010-2011 12

Creating and Destroying Processes

New processes can be explicitly created by the 
user, or implicitly by another process
Original process → parent
New process → child
Processes are managed by the OS “kernel”:
– Process dispatcher chooses which process to run next 

from the pool of active processes



Inf2C Computer Systems - 2010-2011 13

OS Kernel

Kernel: (small, efficient)
– Interrupt handling
– Process creation and destruction
– Process state switching
– Memory management
– Inter-process communication and synchronization
– I/O support



Inf2C Computer Systems - 2010-2011 14

Suspending and Resuming Processes
Problem:
– Memory may not be enough for all active processes (more on 

this in other lectures)
– Some processes have higher priority and must run at the 

expense of others
Solution:
– Processes can be “swapped out” from memory to disk (i.e., 

data is moved to disk)
– Such processes are moved into an “inactive” state (2 new 

process states)
– PCB of inactive processes are still kept in OS memory
– Inactive processes are resumed by “swapping in” the data 

from disk back to memory



Inf2C Computer Systems - 2010-2011 15

Suspending and Resuming Processes

READY BLOCKED

RUNNING

I/O COMPLETION

I/O REQUEST

DISPATCH

TIMEOUT

SUSPENDED
READY

SUSPENDED
BLOCKED

I/O COMPLETION

RESUME

SUSPEND

SUSPEND

RESUME

INACTIVE
STATES

ACTIVE
STATES


