
Inf2C Computer Systems - 2010-2011 1

Lecture 10: Processor design – pipelining

Overlapping the execution of instructions
Pipeline hazards
– Different types
– How to remove them

Inf2C Computer Systems - 2010-2011 2

Pipelining
Let’s assume that all instructions take 5 steps,
e.g.: lw r1,n(r2) # r1=memory[n+r2]

Name
IF

REG
ALU
MEM
WB

Datapath operation
Fetch instruction; PC+4 → PC
Get value from r2
ALU n+r2
Get data from memory
Write memory data into r1

Step
0
1
2
3
4

IF = instruction fetch (includes PC increment)
REG = fetching values from general purpose registers
ALU = arithmetic/logic operations
MEM = memory access
WB = write back results to general purpose registers

Inf2C Computer Systems - 2010-2011 3

Pipelining
Start one instruction per clock cycle

cycle 1 2 3 4 5 6

instruction
flow

• Five instructions are being executed (in different stages)
during the same cycle
• Each instruction still takes 5 cycles, but instructions
now complete every cycle: CPI → 1

MEMREG ALU WBIF

MEMREG ALU WBIF

MEMREG ALU WBIF

MEMREG ALU WBIF

MEMREG ALU WBIF

7 8 9

Inf2C Computer Systems - 2010-2011 4

Preparing instructions for pipelining
Stretch the execution to the max number of cycles, e.g.
sw r1,n(r2) # memory[n+r2]=r1

IF
REG
ALU
MEM
WB

Fetch instruction; PC+4 → PC
Get values of r1 and r2 from registers
ALU n+r2
Store value of r1 to memory
Do nothing

add r1,r2,r3 # r1=r2+r3
IF

REG
ALU
MEM
WB

Fetch instruction; PC+4 → PC
Get values of r2 and r3 from registers
ALU r2+r3
Do nothing
Write result to r1

Inf2C Computer Systems - 2010-2011 5

Execution speedup

cycle 1 2 3 4 5 6

MEM

7 8 9

WBALUREGIF

MEM WBALUREGIF

MEM WBALUREGIF

MEM WBALUREGIF

MEM WBALUREGIF

MEM WBALUREGIF

MEM WBALUREGIF

MEM WBALUREGIF

10 11 12 13 14 15

Speed-up roughly equal to the number of stages

Inf2C Computer Systems - 2010-2011 6

Pipeline hazards

Complications in pipelining, called hazards
– Structural
– Data
– Control

Speedup achieved is limited, CPI over 1

Inf2C Computer Systems - 2010-2011 7

Structural hazards
Example: instructions in IF and MEM stages may
conflict for access to memory (cache)

= “bubble”
MEMREG ALU WBIF

MEMREG ALU WBIF

MEMREG ALU WBIF

MEMREG ALU WBIF

lw

I1

I2

I3

Inf2C Computer Systems - 2010-2011 8

Structural hazards

Not enough hardware resources to execute a
combination of instructions in the same clock
cycle
Straightforward solution: use more resources
– E.g. split cache into instruction cache (used in IF)

and data cache (used in MEM)
Good design – provide enough resources to
avoid hazards for common/frequent cases

Inf2C Computer Systems - 2010-2011 9

Data hazards
One instruction must use value produced by a previous instruction
Example: add r2,r1,r5

lw r3,4(r1)
addi r4,r3,n

MEMREG ALU WBIF

MEMREG ALU WBIF

MEMREG ALU WB

IF

MEMREG ALU WBIF

add

lw

addi

3 cycle stall

Inf2C Computer Systems - 2010-2011 10

Data hazards
Processor must detect hazards and insert bubbles
Solution: compiler can separate dependent instructions

lw r3,4(r1)
add r2,r1,r5
addi r4,r3,n

MEMREG ALU WBIF

MEMREG ALU WBIF

MEMREG ALU WB

IF

MEMREG ALU WBIF

lw

add

addi

2 cycle stall

Inf2C Computer Systems - 2010-2011 11

Data forwarding
The data is actually available before the end of WB
Why not forward it directly to the unit/stage where they
are needed?

MEMREG ALU WBIF

MEMREG ALU WBIF

MEMREG ALU WB

IF

MEMREG ALU WBIF

add

lw

addi

1 cycle stall

Inf2C Computer Systems - 2010-2011 12

Control hazards
Before a conditional branch instruction is resolved, the
processor does not know where to fetch the next
instruction from
Example: beq r1,r2,n

IF
REG
ALU
MEM
WB

Fetch instruction; PC+4 → PC
Get values of r1 and r2 from registers
ALU r1-r2 and PC+n
If r1-r2==0 update PC
Do nothing

Branch is identified in IF but only resolved in MEM

Inf2C Computer Systems - 2010-2011 13

Control hazards

MEMREG ALU WBIF

MEMREG ALU WBIF

MEMREG ALU WBIF

beq

Branch latency

Inf2C Computer Systems - 2010-2011 14

Branch prediction

Solution: predict outcome of branch
– If prediction is correct then no bubble
– If prediction incorrect, processor must discard

(“flush” or “squash”) incorrectly loaded instructions

MEMREG ALU WBIFbeq

MEMREG ALU WBIF

MEMREG ALU WBIF

MEMREG ALU WBIF

MEMREG ALU WBIF
Flushed, on misprediction

Inf2C Computer Systems - 2010-2011 15

Is this the end? in performance improvement

Superscalar processors:
– Can fetch more than 1 instruction per cycle
– Have multiple pipelines and ALUs to execute multiple

instructions simultaneously

Predicated execution:
– Execute simultaneously instructions from both targets of the

branch and discard the incorrect one (e.g. IA-64) (against
control hazards)

Value prediction:
– Predict result of instructions (against data hazards)

Multiprocessors

