
Inf2C Computer Systems - 2010-2011 1

Lecture 10: Processor design – pipelining

Overlapping the execution of instructions
Pipeline hazards
– Different types
– How to remove them
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Pipelining
Let’s assume that all instructions take 5 steps, 
e.g.: lw r1,n(r2)  # r1=memory[n+r2]

Name
IF

REG
ALU
MEM
WB

Datapath operation
Fetch instruction; PC+4 → PC
Get value from r2
ALU n+r2
Get data from memory
Write memory data into r1

Step
0
1
2
3
4

IF = instruction fetch (includes PC increment)
REG = fetching values from general purpose registers
ALU = arithmetic/logic operations
MEM = memory access
WB = write back results to general purpose registers
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Pipelining
Start one instruction per clock cycle

cycle 1 2 3 4 5 6

instruction
flow

• Five instructions are being executed (in different stages) 
during the same cycle
• Each instruction still takes 5 cycles, but instructions 
now complete every cycle: CPI → 1

MEMREG ALU WBIF

MEMREG ALU WBIF

MEMREG ALU WBIF

MEMREG ALU WBIF

MEMREG ALU WBIF

7 8 9
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Preparing instructions for pipelining
Stretch the execution to the max number of cycles, e.g. 
sw r1,n(r2)  # memory[n+r2]=r1

IF
REG
ALU
MEM
WB

Fetch instruction; PC+4 → PC
Get values of r1 and r2 from registers
ALU n+r2
Store value of r1 to memory
Do nothing

add r1,r2,r3  # r1=r2+r3
IF

REG
ALU
MEM
WB

Fetch instruction; PC+4 → PC
Get values of r2 and r3 from registers
ALU r2+r3
Do nothing
Write result to r1
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Execution speedup

cycle 1 2 3 4 5 6

MEM

7 8 9

WBALUREGIF

MEM WBALUREGIF

MEM WBALUREGIF

MEM WBALUREGIF

MEM WBALUREGIF

MEM WBALUREGIF

MEM WBALUREGIF

MEM WBALUREGIF

10 11 12 13 14 15

Speed-up roughly equal to the number of stages
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Pipeline hazards

Complications in pipelining, called hazards
– Structural
– Data
– Control

Speedup achieved is limited, CPI over 1
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Structural hazards
Example: instructions in IF and MEM stages may 
conflict for access to memory (cache)

= “bubble”
MEMREG ALU WBIF

MEMREG ALU WBIF

MEMREG ALU WBIF

MEMREG ALU WBIF

lw

I1

I2

I3
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Structural hazards

Not enough hardware resources to execute a 
combination of instructions in the same clock 
cycle
Straightforward solution: use more resources
– E.g. split cache into instruction cache (used in IF) 

and data cache (used in MEM)
Good design – provide enough resources to 
avoid hazards for common/frequent cases
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Data hazards
One instruction must use value produced by a previous instruction
Example: add  r2,r1,r5 

lw r3,4(r1) 
addi r4,r3,n  

MEMREG ALU WBIF

MEMREG ALU WBIF

MEMREG ALU WB

IF

MEMREG ALU WBIF

add

lw

addi

3 cycle stall
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Data hazards
Processor must detect hazards and insert bubbles
Solution: compiler can separate dependent instructions

lw r3,4(r1)  
add r2,r1,r5 
addi r4,r3,n 

MEMREG ALU WBIF

MEMREG ALU WBIF

MEMREG ALU WB

IF

MEMREG ALU WBIF

lw

add

addi

2 cycle stall



Inf2C Computer Systems - 2010-2011 11

Data forwarding
The data is  actually available before the end of WB
Why not forward it directly to the unit/stage where they 
are needed?

MEMREG ALU WBIF

MEMREG ALU WBIF

MEMREG ALU WB

IF

MEMREG ALU WBIF

add

lw

addi

1 cycle stall
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Control hazards
Before a conditional branch instruction is resolved, the 
processor does not know where to fetch the next 
instruction from
Example: beq r1,r2,n

IF
REG
ALU
MEM
WB

Fetch instruction; PC+4 → PC
Get values of r1 and r2 from registers
ALU r1-r2 and PC+n
If r1-r2==0 update PC
Do nothing

Branch is identified in IF but only resolved in MEM
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Control hazards

MEMREG ALU WBIF

MEMREG ALU WBIF

MEMREG ALU WBIF

beq

Branch latency
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Branch prediction

Solution: predict outcome of branch
– If prediction is correct then no bubble
– If prediction incorrect, processor must discard 

(“flush” or “squash”) incorrectly loaded instructions

MEMREG ALU WBIFbeq

MEMREG ALU WBIF

MEMREG ALU WBIF

MEMREG ALU WBIF

MEMREG ALU WBIF
Flushed, on misprediction
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Is this the end? in performance improvement

Superscalar processors:
– Can fetch more than 1 instruction per cycle
– Have multiple pipelines and ALUs to execute multiple 

instructions simultaneously

Predicated execution:
– Execute simultaneously instructions from both targets of the 

branch and discard the incorrect one (e.g. IA-64) (against 
control hazards)

Value prediction:
– Predict result of instructions (against data hazards)

Multiprocessors


