Lecture 10: Processor design — pipelining

= Overlapping the execution of instructions

" Pipeline hazards
— Ditterent types

— How to remove them

Inf2C Computer Systems - 2010-2011

Pipelining

" Let’s assume that all instructions take 5 steps,
c.g.. Iw r1,n(r2) # rl=memory[n+r2]

Step Name Datapath operation
0 IF Fetch instruction; PC+4 — PC
REG Get value from r2
ALU ALU n+12
MEM Get data from memory
4 WB Write memory data into rl

o -

IF = instruction fetch (includes PC increment)

REG = fetching values from general purpose registers
ALU = arithmetic/logic operations

MEM = memory access

WB = write back results to general purpose registers

Inf2C Computer Systems - 2010-2011

Pipelining

= Start one instruction per clock cycle

N
IF | |[REG| [ALU | [MEM /WB\

instruction
flow IF REG| [ALU ﬁMEMN WB

IF REG |||ALU (|[MEM] | WB

IF \IREGJ ALU | IMEM| | wB
\IF / REG| |ALU | IMEM| | WB
N’
cycle 1 2 3 4 5 6 7 8 9

* ive instructions are being executed (in different stages)

during the same cycle
* Hach instruction still takes 5 cycles, but instructions

4\ now complete every cycle: CPI — 1
&Y Inf2C Computer Systems - 2010-2011

Preparing instructions for pipelining

= Stretch the execution to the max number of cycles, e.g.
sw rl,n(r2) # memory[n+r2]=rl
IF Fetch instruction; PC+4 — PC
REG Get values of r1 and 12 from registers
ALU ALU n+12
MEM Store value of r1 to memory
WB Do nothing

add r1,r2,r3 # rl=r2+r3
IF Fetch instruction; PC+4 — PC
REG Get values of r2 and r3 from registers
ALLU ALU r2+13
MEM Do nothing
WB Write result to rl

Inf2C Computer Systems - 2010-2011

Execution speedup

IF REG | |ALU | [IMEM|| WB

IF REG | |ALU | [IMEM|| WB

IF REG | |ALU | [IMEM|| WB

IF REG | |ALU | [IMEM|| WB

IF REG | |ALU | IMEM|| WB

IF REG | |ALU | [MEM|| WB

IF REG | |ALU | [IMEM|| WB

IF REG | |ALU | IMEM|| WB

cycle 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

" Speed-up roughly equal to the number of stages

Inf2C Computer Systems - 2010-2011

Pipeline hazards

= Complications in pipelining, called hazards
— Structural
— Data

— Control

= Speedup achieved is limited, CPI over 1

Inf2C Computer Systems - 2010-2011

Structural hazards

= Hxample: instructions in IF and MEM stages may

contlict for access to memory (cache)

w

11
12

13

O — “hubble”

IF REG| |ALU | MEM| | WB
IF REG| |ALU (| MEM] | WB
IF

Inf2C Computer Systems - 2010-2011

REG| |ALU (| MEM] | WB
IF REG| |ALU (| MEM

WB

Structural hazards

= Not enough hardware resources to execute a
combination of instructions in the same clock
cycle

= Straightforward solution: use more resources

— E.g. split cache into instruction cache (used in IF)
and data cache (used in MEM)

" Good design — provide enough resources to
avoid hazards for common/frequent cases

Inf2C Computer Systems - 2010-2011

Data hazards

* One instruction must use value produced by a previous instruction

u Example: add r2,rl1,r5
Iw r3,4(rl)
addi r4,r3,n
add| IF | |REG| |[ALU | [IMEM| | WB
fw IF | |REG| |ALU | MEM| | WB |}
addi IF | >
< >
O*‘REG ALU | MEM| | WB
I\ Y,
IF | |REG| |ALU | MEM| | WB

\
3 cycle stall

Inf2C Computer Systems - 2010-2011

Data hazards

" Processor must detect hazards and insert bubbles

= Solution: compiler can separate dependent instructions

<

Iw r3,4(rl)

add r2,rl1,r5
addi r4,r3,n

Iw

IF

REG

ALU

MEM

WB |

add
addi

IF

REG

ALU

]MEN*

WB

IF

-

ALU

MEM

WB

\
2 cycle stall

REG

MEM

WB

Inf2C Computer Systems - 2010-2011

10

Data forwarding

" The data is actually available before the end of WB

= Why not forward it directly to the unit/stage where they
are needed?

add | IF REG| |ALU | MEM| | WB
w IF REG| |ALU | MEM} | WB
addi IF | < >

O
Y/

1 cycle stall

REG

. -F--F-

MEM

WB

IF

MEM

WB

Inf2C Computer Systems - 2010-2011

1

Control hazards

= Before a conditional branch instruction is resolved, the
processor does not know where to fetch the next
instruction from

= Example: beq rl1,r2,n

IF Fetch instruction; PC+4 — PC
REG Get values of r1 and 12 from registers
ALU ALU r1-r2 and PC+n
—) MEM If r1-r2==0 update PC
WB Do nothing

= Branch is identified in IF but only resolved in MEM

Inf2C Computer Systems - 2010-2011 12

Control hazards

beq

IF | |REG| |ALU MEMI\‘ WB
Sl : >
— —
:1113 REG | |ALU | [MEM| | WB
~ g IF | |[REG| |ALU | [MEM| | WwB

Branch latency

Inf2C Computer Systems - 2010-2011

13

Branch prediction

= Solution: predict outcome of branch
— If prediction 1s correct then no bubble

— If prediction incorrect, processor must discard

(“flush” or “squash”) incorrectly loaded instructions

beq | IF | |REG||ALU | MEM| | WB
IE[REG| |[ALU | [MEM| | WB
IF | |REG| |[ALU | [MEM| | WB
_ | IF | [REG| |ALU | [MEM{WB
Flushed, on misprediction —
IF | |REG| |[ALU | [MEM| | WB

Inf2C Computer Systems - 2010-2011

Is this the end? in performance improvement

" Superscalar processors:
— Can fetch more than 1 instruction per cycle

— Have multiple pipelines and ALUs to execute multiple
instructions simultaneously

" Predicated execution:

— Execute simultaneously instructions from both targets of the
branch and discard the incorrect one (e.g. IA-64) (against
control hazards)

" Value prediction:

— Predict result of instructions (against data hazards)

= Multiprocessors

Inf2C Computer Systems - 2010-2011

15

