Lecture 10: Processor design – pipelining

- Overlapping the execution of instructions
- Pipeline hazards
 - Different types
 - How to remove them

Pipelining

- Let's assume that all instructions take 5 steps,
 - e.g.: Iw r1, n(r2) # r1=memory[n+r2]
 - Step Name Datapath operation
 - 0 IF Fetch instruction; $PC+4 \rightarrow PC$
 - 1 **REG** Get value from r2
 - 2 ALU ALU n+r2
 - 3 MEM Get data from memory
 - 4 WB Write memory data into r1

IF = instruction fetch (includes PC increment)
REG = fetching values from general purpose registers
ALU = arithmetic/logic operations
MEM = memory access

WB = write back results to general purpose registers

- Five instructions are being executed (in different stages) during the same cycle
- Each instruction still takes 5 cycles, but instructions

now complete every cycle: $CPI \rightarrow 1$

Preparing instructions for pipelining

- Stretch the execution to the max number of cycles, e.g. sw r1, n(r2) # memory[n+r2]=r1
 - IF Fetch instruction; $PC+4 \rightarrow PC$
 - REG Get values of r1 and r2 from registers
 - ALU ALU n+r2
 - MEM Store value of r1 to memory
 - WB Do nothing
 - add r1, r2, r3 # r1=r2+r3
 - IF Fetch instruction; $PC+4 \rightarrow PC$
 - REG Get values of r2 and r3 from registers
 - ALU ALU r2+r3
 - MEM Do nothing
 - WB Write result to r1

Execution speedup

Inf2C Computer Systems - 2010-2011

Pipeline hazards

- Complications in pipelining, called hazards
 - Structural
 - Data
 - Control
- Speedup achieved is limited, CPI over 1

Structural hazards

 Example: instructions in IF and MEM stages may conflict for access to memory (cache)

Structural hazards

- Not enough hardware resources to execute a combination of instructions in the same clock cycle
- Straightforward solution: use more resources
 - E.g. split cache into instruction cache (used in IF) and data cache (used in MEM)
- Good design provide enough resources to avoid hazards for common/frequent cases

Data hazards

• One instruction must use value produced by a previous instruction

Data hazards

- Processor must detect hazards and insert bubbles
- Solution: compiler can separate dependent instructions

Data forwarding

- The data is actually available before the end of WB
- Why not forward it directly to the unit/stage where they are needed?

Control hazards

- Before a conditional branch instruction is resolved, the processor does not know where to fetch the next instruction from
- Example: beq r1, r2, n

	IF	Fetch instruction; $PC+4 \rightarrow PC$
	REG	Get values of r1 and r2 from registers
	ALU	ALU r1-r2 and PC+n
	MEM	If $r1-r2 == 0$ update PC
·	WB	Do nothing

Branch is identified in IF but only resolved in MEM

Branch prediction

- Solution: predict outcome of branch
 - If prediction is correct then no bubble
 - If prediction incorrect, processor must discard ("flush" or "squash") incorrectly loaded instructions

Is this the end? in performance improvement

- Superscalar processors:
 - Can fetch more than 1 instruction per cycle
 - Have multiple pipelines and ALUs to execute multiple instructions simultaneously
- Predicated execution:
 - Execute simultaneously instructions from both targets of the branch and discard the incorrect one (e.g. IA-64) (against control hazards)
- Value prediction:
 - Predict result of instructions (against data hazards)
- Multiprocessors

