
Inf2C Computer Systems - 2010-2011 1

Lecture 9: Processor design – multi cycle

Aren’t single cycle processors good enough? No!
– Speed: cycle time must be long enough for the most 

complex instruction to complete
– But the average instruction needs less time
– Cost: functional units (e.g. adders) cannot be re-used 

within one cycle
Multiple & varied cycles per instruction means 
that no instruction takes more time or uses more 
func. units than required



Inf2C Computer Systems - 2010-2011 2

Lecture outline

Brief processor performance evaluation
Determine the components
Build the datapath
Build the control



Inf2C Computer Systems - 2010-2011 3

Measuring processor speed

Execution time is
instruction count 

x
cycles per instruction

x
cycle time



Inf2C Computer Systems - 2010-2011 4

Determine the components

Processor task
Instruction fetch from 
memory
Read registers
Execution
– Data processing 

instructions
– Data transfer 

instructions
– Branch instructions

Component list
PC register
Memory (instructions)
Adder: PC+4
Register file
– 2 read, 1 write

ALU



Inf2C Computer Systems - 2010-2011 5

Design guidelines

Cycle time determined by the delay through the 
slowest functional unit
Reuse functional units as much as possible
– Multiplexors added to select the different inputs

At end of each cycle, data required in 
subsequent cycles must be stored somewhere
– Data for other instructions are kept in the memory, 

register file, or the PC
– Data for same instruction are kept in new registers 

not visible to the programmer



Inf2C Computer Systems - 2010-2011 6

Multi-cycle datapath



Inf2C Computer Systems - 2010-2011 7

How to design the control part

The control unit of a multicycle processor is an 
FSM
Determine exactly what happens in each cycle
and what is the next step

Be careful with register load-enable control 
signals



Inf2C Computer Systems - 2010-2011 8

What happens in each cycle – 1 & 2

1. Instruction fetch
IR <= Mem[PC]
PC <= PC+4

2. Instruction decode and register fetch
A <= Reg[IR[25:21]] 
B <= Reg[IR[20:16]]

ALUOut <= PC+sgnext(IR[15:0]<<2)



Inf2C Computer Systems - 2010-2011 9

What happens in each cycle – 3 

3a. Memory address generation
ALUOut <= A+sgnext(IR[15:0])

3b. R-type arithmetic-logical instruction
ALUOut <= A op B

3c. Branch completion
if (A == B) PC <= ALUOut

3d. Jump completion
PC <= {PC[31:28],IR[25:0],2’b00}



Inf2C Computer Systems - 2010-2011 10

What happens in each cycle – 4

4a. Memory access (load)
MDR <= Mem[ALUOut]

4b. Memory access (store) & completion
Mem[ALUOut] <= B

4c. R-type arith-logical instruction completion
Reg[IR[15:11]] = ALUOut



Inf2C Computer Systems - 2010-2011 11

What happens in each cycle – 5

5. Load instruction completion
Reg[IR[20:16]] <= MDR



Inf2C Computer Systems - 2010-2011 12

State diagram

0
1


