Lectures 3-4: MIPS instructions

= Motivation
— Learn how a processor’s ‘native’ language looks like

— Discover the most important software-hardware
interface

= MIPS — Microprocessor without Interlocked
Pipeline Stages

" [nstruction set can be downloaded from:
— http://www._cs.wisc.edu/~larus/HP_AppA.pdf
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Outline

" Instruction set

= Basic arithmetic & logic instructions
" Processor registers

" Getting data from the memory

= Control-flow instructions
" Method calls
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Processor instructions

" Instruction set (IS): collection of all machine
instructions recognized by a particular processor

" The instruction set abstracts away the hardware
details from the programmer

— The same way as an object hides its implementation
details from its users

" Instruction Set Architecture (ISA): a generic
processor implementation that recognizes a
particular IS
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RISC — CISC machines

" There are many ways of defining the hardware-software
interface defined by the instruction set

— Depends on how much work the hardware is allowed to do
= RISC=Reduced Instruction Set Computer
CISC=Complex Instruction Set Computer
= High-level language (HLL): a=b+10
Assembly language:

— RISC:
Iw r4,0(r2) # rd=memory|[r2+0]
add r5,r4,10 # r5=r4+10

sw r5,0(r3) # memory[r3+0]=r5

— CISC:
ADDW3 (R5), (R2),10
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Assembly language

" Instructions are represented internally as binary
numbers

— Very hard to make out which instruction is which

= Assembly language: symbolic representation of
machine instructions

= We use the MIPS IS, typical of a RISC processor
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Arithmetic & logical operations

" Data processing instructions look like:

operation destination var, 1st operand, 2" operand

add a,b,c a = Db+tc

sub a,b,c a=b—c

= Bit-wise logical instructions: and, or, xor
= Shift instructions:

sll a,b,shamt a = b << shamt

srl a,b,shamt a = b >> shamt, logical shift
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Registers

IS places restrictions on instruction operands
RISC processors operate on registers only

Registers are internal storage locations holding
program variables

Size of register equals the machine’s word

There 1s a relatively small number of registers
present; MIPS has 32
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MIPS general-purpose registers

" Generally, any register available for any use

" Conventions exist for enabling code portability
= Java/C variables held in registers $s0 — $s7

" Temporary variables: $t0 — $t9

= Register O ($zero) is hardwired to 0

= Other registers with special roles

" Program Counter (PC) holds address of next
instruction to be executed

... — INot one of the general purpose registers
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Immediate operands

= MIPS has instructions with one constant
(immediate) operand, e.g. addi r1,r2,n # ri=r2+n

" LLoad a (small) constant into a register:
addi $s0,%$zero,n # $s0=n ($s0,5_,=n; $s0;,_,=0)

= Assembler pseudo-instruction 1i reg,constant
— Translated into 1 instruction for immediates < 106bits

and to more instructions for more complicated cases
e.g. for a 32-bit immediate

lui $s1,nl # $s1,. ,=0; $s1;, =Nl
ori $s1,%$s1,n2 # $sl,; ,=n2; $sl;,_,,=nl
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Getting at the data

'.]aVQ;CIass MyClass {
int varl,var?2;

¥ 4

myObj = new MyClass()

$s2,

£emp = myObj.var2
= MIPS:
($s2 points to base of myOby)
Iw $t1ﬂi$$82) # $tl=memory[4+$s2]

offset of
var2 within myObj

232_4
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Data-transfer instructions

offset

Load W()fd: 1 ﬁbase address
Iw r1,n(r2) # rl=memory[n+r2]j

Store Word:
sw ri,n(r2) # memory[n+r2]=rl

Load Byte:

Ib r1,n(r2) # ril, ;= memory[n+r2]
rl;, = sign extension
Store Byte:
sb ri,n(r2) # memory[n+r2]=ri,_,
no sign extension
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Memory addressing

" Memory is byte addressable, but it 1s organised
so that a word can be accessed directly

" Where can a word be stored?

Anywhere (unaligned), or at an mult. 4 address (aligned)?
" Which is the address of a word?

bit 31 Big Endian  pjt o bit 31 Little Endian  pjit o
v v v v

N NEE
word 4

o 11213
byteO bytel byte2 byte3

7 16 15 14
word 4

3 21110
byte3 byte2 bytel byteO
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Instruction formats

" Instruction representation composed of bit-fields
= Similar instructions have the same format

= MIPS instruction formats:
— R-format (add, sub, ...)
6 5
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5 5 5 6
op rs rt rd [shamt| func
Main  1st  2nd  result  shift  sub-function
opcode operand operand opcode
— I-format (addi, lw, sw, ...)
0 5 5 16
op | s rt immediate
Tst resdlt
operand
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MIPS instructions — part 2

" [ ast time:

— Data processing instructions: add, sub, and, ...

" Registers only and immediate types
— Data transfer instructions: Iw, sw, Ib, sb
— Instruction encoding
" Today:

— Control transfer instructions
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Control transfers: If structures

Java: it (1'=) )/ “if case”
stmntl 3 .
else case
else //////////»
stmnt2 “follow through”
stmnt3 ——
MIPS: beq $s1,%s2, 1abel
“branch if equal”: compare value in $s1 with value in §s2
and if equal then branch to instruction marked label

beq $s1,%s2,labell
stimntl
J label2 # skip stmnt2
labell: stmnt2
label2: stmnt3
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Control transfer instructions

= Conditional branches, I-format: beq ri1,r2, label
6 5 5 16

4 r1 2 offset

— In assembly code label is usually a string
— In machine code label 1s obtained from immediate
value as: branch target = PC + 4 * offset

= Similarly: bne ri,r2,label # if ril=r2 go to label

= Unconditional jump, J-format: j 1abel
6 26
2 target
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Loops 1n assembly language

" Java: while (count!=0) stmnt

= MIPS: loop: beq $s1,$zero,end # $si
stmnt
J loop # branch back to
end:

" Java: while (flagl && flag2) stmnt

= MIPS: 1oop: beq $s1,$zero,end # $si
beq $s2,%$zero,end # $s2
stmnt
J loop # branch back to
end:
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holds count

loop

holds flagl
holds flag2

loop
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Comparisons

= “Set if less than” (R-format): sit r1,r2,r3

—set rl to 1 1f +2<r3, otherwise set r1 to O
" Java: while (i > j) stmnt
= MIPS example:

— assume that $s1 contains 1 and $s2 contains |

loop: slt $t0,$s2,$s1 # $t0 = (1 > )
beq $t0,%$zero,end # true if i <= j
stmnt
J loop # jump back to loop

end: ..
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Method calls

= Method calls are essential even for a small program

= Most processors provide support for method calls

" Java:

call to foo at line 1.1
foo(); _—
call to foo at line 1.2
foo(); _—

void foo() {

return; . where do we return tor
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MIPS support for method calls

" Jumping into the method: jal label
— “jump and link™: set $ra to PC+4 and set PC to label

— Another J-format instruction

" Returning: jr rl

— “yump register’”: set PC to value in register rl
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Using a stack for method calls

= Nested calls = must save return address to prevent
overwriting. Solution: use a stack in memory

—call A
N <—| /\/
fcal 1 B Addr /\_/

3 ]
—call C a Sp
] v C (stack
" to push a word: — pointer)

addi $sp,Psp,-4 # move sp down
sw $ra,0($sp) # save rl on top of stack

" to pop a word:

Iw  $ra,0($sp) # fetch value from stack
addi $sp,$sp,4 # move sp up
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Other uses of the stack

= Stack used to save callet’s registers, so that they
can be used by the callee

— “caller save” or “callee save” convention
= Stack can also be used to pass and return
parameters

— MIPS uses $a0 — $a4 for the first 4 word-length
parameters, and $v0, §v1 for return values

>~

/\/
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