Lectures 3-4: MIPS instructions

= Motivation
— Learn how a processor’s ‘native’ language looks like

— Discover the most important software-hardware
interface

= MIPS — Microprocessor without Interlocked
Pipeline Stages

" [nstruction set can be downloaded from:
— http://www._cs.wisc.edu/~larus/HP_AppA.pdf

Inf2C Computer Systems - 2010-2011

Outline

" Instruction set

= Basic arithmetic & logic instructions
" Processor registers

" Getting data from the memory

= Control-flow instructions
" Method calls

Inf2C Computer Systems - 2010-2011

Processor instructions

" Instruction set (IS): collection of all machine
instructions recognized by a particular processor

" The instruction set abstracts away the hardware
details from the programmer

— The same way as an object hides its implementation
details from its users

" Instruction Set Architecture (ISA): a generic
processor implementation that recognizes a
particular IS

Inf2C Computer Systems - 2010-2011

RISC — CISC machines

" There are many ways of defining the hardware-software
interface defined by the instruction set

— Depends on how much work the hardware is allowed to do
= RISC=Reduced Instruction Set Computer
CISC=Complex Instruction Set Computer
= High-level language (HLL): a=b+10
Assembly language:

— RISC:
Iw r4,0(r2) # rd=memory|[r2+0]
add r5,r4,10 # r5=r4+10

sw r5,0(r3) # memory[r3+0]=r5

— CISC:
ADDW3 (R5), (R2),10

Inf2C Computer Systems - 2010-2011

Assembly language

" Instructions are represented internally as binary
numbers

— Very hard to make out which instruction is which

= Assembly language: symbolic representation of
machine instructions

= We use the MIPS IS, typical of a RISC processor

Inf2C Computer Systems - 2010-2011

Arithmetic & logical operations

" Data processing instructions look like:

operation destination var, 1st operand, 2" operand

add a,b,c a = Db+tc

sub a,b,c a=b—c

= Bit-wise logical instructions: and, or, xor
= Shift instructions:

sll a,b,shamt a = b << shamt

srl a,b,shamt a = b >> shamt, logical shift

Inf2C Computer Systems - 2010-2011

Registers

IS places restrictions on instruction operands
RISC processors operate on registers only

Registers are internal storage locations holding
program variables

Size of register equals the machine’s word

There 1s a relatively small number of registers
present; MIPS has 32

Inf2C Computer Systems - 2010-2011

MIPS general-purpose registers

" Generally, any register available for any use

" Conventions exist for enabling code portability
= Java/C variables held in registers $s0 — $s7

" Temporary variables: $t0 — $t9

= Register O ($zero) is hardwired to 0

= Other registers with special roles

" Program Counter (PC) holds address of next
instruction to be executed

... — INot one of the general purpose registers

Inf2C Computer Systems - 2010-2011

Immediate operands

= MIPS has instructions with one constant
(immediate) operand, e.g. addi r1,r2,n # ri=r2+n

" LLoad a (small) constant into a register:
addi $s0,%$zero,n # $s0=n ($s0,5_,=n; $s0;,_,=0)

= Assembler pseudo-instruction 1i reg,constant
— Translated into 1 instruction for immediates < 106bits

and to more instructions for more complicated cases
e.g. for a 32-bit immediate

lui $s1,nl # $s1,. ,=0; $s1;, =Nl
ori $s1,%$s1,n2 # $sl,; ,=n2; $sl;,_,,=nl

Inf2C Computer Systems - 2010-2011

Getting at the data

'.]aVQ;CIass MyClass {
int varl,var?2;

¥ 4

myObj = new MyClass()

$s2,

£emp = myObj.var2
= MIPS:
($s2 points to base of myOby)
Iw $t1ﬂi$$82) # $tl=memory[4+$s2]

offset of
var2 within myObj

232_4

Inf2C Computer Systems - 2010-2011

F—— 32 bits ————

10

Data-transfer instructions

offset

Load W()fd: 1 ﬁbase address
Iw r1,n(r2) # rl=memory[n+r2]j

Store Word:
sw ri,n(r2) # memory[n+r2]=rl

Load Byte:

Ib r1,n(r2) # ril, ;= memory[n+r2]
rl;, = sign extension
Store Byte:
sb ri,n(r2) # memory[n+r2]=ri,_,
no sign extension

Inf2C Computer Systems - 2010-2011 1

Memory addressing

" Memory is byte addressable, but it 1s organised
so that a word can be accessed directly

" Where can a word be stored?

Anywhere (unaligned), or at an mult. 4 address (aligned)?
" Which is the address of a word?

bit 31 Big Endian pjt o bit 31 Little Endian pjit o
v v v v

N NEE
word 4

o 11213
byteO bytel byte2 byte3

7 16 15 14
word 4

3 21110
byte3 byte2 bytel byteO

Inf2C Computer Systems - 2010-2011

12

Instruction formats

" Instruction representation composed of bit-fields
= Similar instructions have the same format

= MIPS instruction formats:
— R-format (add, sub, ...)
6 5

Inf2C Computer Systems - 2010-2011

5 5 5 6
op rs rt rd [shamt| func
Main 1st 2nd result shift sub-function
opcode operand operand opcode
— I-format (addi, lw, sw, ...)
0 5 5 16
op | s rt immediate
Tst resdlt
operand

13

MIPS instructions — part 2

" [ast time:

— Data processing instructions: add, sub, and, ...

" Registers only and immediate types
— Data transfer instructions: Iw, sw, Ib, sb
— Instruction encoding
" Today:

— Control transfer instructions

Inf2C Computer Systems - 2010-2011

14

Control transfers: If structures

Java: it (1'=))/ “if case”
stmntl 3 .
else case
else //////////»
stmnt2 “follow through”
stmnt3 ——
MIPS: beq $s1,%s2, 1abel
“branch if equal”: compare value in $s1 with value in §s2
and if equal then branch to instruction marked label

beq $s1,%s2,labell
stimntl
J label2 # skip stmnt2
labell: stmnt2
label2: stmnt3

Inf2C Computer Systems - 2010-2011

15

Control transfer instructions

= Conditional branches, I-format: beq ri1,r2, label
6 5 5 16

4 r1 2 offset

— In assembly code label is usually a string
— In machine code label 1s obtained from immediate
value as: branch target = PC + 4 * offset

= Similarly: bne ri,r2,label # if ril=r2 go to label

= Unconditional jump, J-format: j 1abel
6 26
2 target

Inf2C Computer Systems - 2010-2011

Loops 1n assembly language

" Java: while (count!=0) stmnt

= MIPS: loop: beq $s1,$zero,end # $si
stmnt
J loop # branch back to
end:

" Java: while (flagl && flag2) stmnt

= MIPS: 1oop: beq $s1,$zero,end # $si
beq $s2,%$zero,end # $s2
stmnt
J loop # branch back to
end:

Inf2C Computer Systems - 2010-2011

holds count

loop

holds flagl
holds flag2

loop

17

Comparisons

= “Set if less than” (R-format): sit r1,r2,r3

—set rl to 1 1f +2<r3, otherwise set r1 to O
" Java: while (i > j) stmnt
= MIPS example:

— assume that $s1 contains 1 and $s2 contains |

loop: slt $t0,$s2,$s1 # $t0 = (1 >)
beq $t0,%$zero,end # true if i <= j
stmnt
J loop # jump back to loop

end: ..

Inf2C Computer Systems - 2010-2011

18

Method calls

= Method calls are essential even for a small program

= Most processors provide support for method calls

" Java:

call to foo at line 1.1
foo(); _—
call to foo at line 1.2
foo(); _—

void foo() {

return; . where do we return tor

Inf2C Computer Systems - 2010-2011

19

MIPS support for method calls

" Jumping into the method: jal label
— “jump and link™: set $ra to PC+4 and set PC to label

— Another J-format instruction

" Returning: jr rl

— “yump register’”: set PC to value in register rl

Inf2C Computer Systems - 2010-2011 20

Using a stack for method calls

= Nested calls = must save return address to prevent
overwriting. Solution: use a stack in memory

—call A
N <—| /\/
fcal 1 B Addr /_/

3]
—call C a Sp
] v C (stack
" to push a word: — pointer)

addi $sp,Psp,-4 # move sp down
sw $ra,0($sp) # save rl on top of stack

" to pop a word:

Iw $ra,0($sp) # fetch value from stack
addi $sp,$sp,4 # move sp up

Inf2C Computer Systems - 2010-2011

Other uses of the stack

= Stack used to save callet’s registers, so that they
can be used by the callee

— “caller save” or “callee save” convention
= Stack can also be used to pass and return
parameters

— MIPS uses $a0 — $a4 for the first 4 word-length
parameters, and $v0, §v1 for return values

>~

/\/

Inf2C Computer Systems - 2010-2011

22

