
Inf2C Computer Systems - 2010-2011 1

Lectures 3-4: MIPS instructions

Motivation
– Learn how a processor’s ‘native’ language looks like
– Discover the most important software-hardware

interface
MIPS – Microprocessor without Interlocked
Pipeline Stages
Instruction set can be downloaded from:
– http://www.cs.wisc.edu/~larus/HP_AppA.pdf

Inf2C Computer Systems - 2010-2011 2

Outline

Instruction set
Basic arithmetic & logic instructions
Processor registers
Getting data from the memory
Control-flow instructions
Method calls

Inf2C Computer Systems - 2010-2011 3

Processor instructions
Instruction set (IS): collection of all machine
instructions recognized by a particular processor
The instruction set abstracts away the hardware
details from the programmer
– The same way as an object hides its implementation

details from its users
Instruction Set Architecture (ISA): a generic
processor implementation that recognizes a
particular IS

Inf2C Computer Systems - 2010-2011 4

RISC – CISC machines
There are many ways of defining the hardware-software
interface defined by the instruction set
– Depends on how much work the hardware is allowed to do

RISC=Reduced Instruction Set Computer
CISC=Complex Instruction Set Computer
High-level language (HLL): a=b+10
Assembly language:
– RISC:

– CISC:

lw r4,0(r2) # r4=memory[r2+0]
add r5,r4,10 # r5=r4+10
sw r5,0(r3) # memory[r3+0]=r5

ADDW3 (R5),(R2),10

Inf2C Computer Systems - 2010-2011 5

Assembly language

Instructions are represented internally as binary
numbers
– Very hard to make out which instruction is which

Assembly language: symbolic representation of
machine instructions
We use the MIPS IS, typical of a RISC processor

Inf2C Computer Systems - 2010-2011 6

Arithmetic & logical operations

Data processing instructions look like:
operation destination var, 1st operand, 2nd operand

add a,b,c a = b+c
sub a,b,c a = b−c

Bit-wise logical instructions: and, or, xor
Shift instructions:

sll a,b,shamt a = b << shamt
srl a,b,shamt a = b >> shamt, logical shift

Inf2C Computer Systems - 2010-2011 7

Registers

IS places restrictions on instruction operands
RISC processors operate on registers only
Registers are internal storage locations holding
program variables
Size of register equals the machine’s word
There is a relatively small number of registers
present; MIPS has 32

Inf2C Computer Systems - 2010-2011 8

MIPS general-purpose registers

Generally, any register available for any use
Conventions exist for enabling code portability
Java/C variables held in registers $s0 – $s7

Temporary variables: $t0 – $t9

Register 0 ($zero) is hardwired to 0
Other registers with special roles
Program Counter (PC) holds address of next
instruction to be executed
– Not one of the general purpose registers

Inf2C Computer Systems - 2010-2011 9

Immediate operands

MIPS has instructions with one constant
(immediate) operand, e.g. addi r1,r2,n # r1=r2+n

addi $s0,$zero,n # $s0=n ($s015-0=n; $s031-16=0)

lui $s1,n1 # $s115-0=0; $s131-16=n1
ori $s1,$s1,n2 # $s115-0=n2; $s131-16=n1

Load a (small) constant into a register:

Assembler pseudo-instruction li reg,constant

– Translated into 1 instruction for immediates < 16bits
and to more instructions for more complicated cases
e.g. for a 32-bit immediate

Inf2C Computer Systems - 2010-2011 10

Getting at the data

Java:

MIPS:
($s2 points to base of myObj)

Class MyClass {
int var1,var2;

}
…
myObj = new MyClass()
…
temp = myObj.var2

lw $t1,4($s2) # $t1=memory[4+$s2]

offset of
var2 within myObj

$s2

4

8

232 - 4

0

32 bits

var1
var2

Inf2C Computer Systems - 2010-2011 11

Data-transfer instructions

Load Word:

Store Word:

Load Byte:

Store Byte:

lw r1,n(r2) # r1=memory[n+r2]

sw r1,n(r2) # memory[n+r2]=r1

base address
offset

lb r1,n(r2) # r17-0= memory[n+r2]
r131-8= sign extension

sb r1,n(r2) # memory[n+r2]=r17-0
no sign extension

Inf2C Computer Systems - 2010-2011 12

Memory addressing

Memory is byte addressable, but it is organised
so that a word can be accessed directly
Where can a word be stored?

Anywhere (unaligned), or at an mult. 4 address (aligned)?

Which is the address of a word?

byte0 byte1 byte2 byte3
0 1 2 3

bit 0bit 31 Big Endian

word 4
4 5 6 7

byte3 byte2 byte1 byte0
3 2 1 0

bit 0bit 31 Little Endian

word 4
7 6 5 4

Inf2C Computer Systems - 2010-2011 13

Instruction formats

Instruction representation composed of bit-fields
Similar instructions have the same format
MIPS instruction formats:
– R-format (add, sub, …)

op
6 5 5 16

rs rt immediate

op
6 5 5 5 5 6

rs rt rd shamt
Main
opcode

1st
operand

2nd
operand

result shift sub-function
opcode

func

result

– I-format (addi, lw, sw, …)

1st
operand

Inf2C Computer Systems - 2010-2011 14

MIPS instructions – part 2

Last time:
– Data processing instructions: add, sub, and, …

Registers only and immediate types

– Data transfer instructions: lw, sw, lb, sb
– Instruction encoding

Today:
– Control transfer instructions

Inf2C Computer Systems - 2010-2011 15

Control transfers: If structures

Java:

MIPS:
“branch if equal”: compare value in $s1 with value in $s2

and if equal then branch to instruction marked label

if (i!=j)
stmnt1

else
stmnt2

stmnt3

beq $s1,$s2,label1
stmnt1
j label2 # skip stmnt2

label1: stmnt2
label2: stmnt3

“if case”

“else case”

“follow through”

beq $s1,$s2,label

Inf2C Computer Systems - 2010-2011 16

Control transfer instructions

Conditional branches, I-format:

– In assembly code label is usually a string
– In machine code label is obtained from immediate

value as: branch target = PC + 4 * offset
Similarly:
Unconditional jump, J-format: j label

beq r1,r2,label

bne r1,r2,label # if r1!=r2 go to label

4
6 5 5 16

r1 r2 offset

2
6 26

target

Inf2C Computer Systems - 2010-2011 17

Loops in assembly language
Java:
MIPS:

Java:
MIPS:

while (count!=0) stmnt

loop: beq $s1,$zero,end # $s1 holds count
stmnt
j loop # branch back to loop

end: …

while (flag1 && flag2) stmnt

loop: beq $s1,$zero,end # $s1 holds flag1
beq $s2,$zero,end # $s2 holds flag2
stmnt
j loop # branch back to loop

end: …

Inf2C Computer Systems - 2010-2011 18

Comparisons
“Set if less than” (R-format):
– set r1 to 1 if r2<r3, otherwise set r1 to 0

Java:
MIPS example:
– assume that $s1 contains i and $s2 contains j

while (i > j) stmnt

loop: slt $t0,$s2,$s1 # $t0 = (i > j)
beq $t0,$zero,end # true if i <= j
stmnt
j loop # jump back to loop

end: …

slt r1,r2,r3

Inf2C Computer Systems - 2010-2011 19

Method calls
Method calls are essential even for a small program
Most processors provide support for method calls
Java: …

foo();
…
foo();
…

call to foo at line L1

call to foo at line L2

void foo() {
…
return;
}

where do we return to?

Inf2C Computer Systems - 2010-2011 20

MIPS support for method calls

Jumping into the method:
– “jump and link”: set $ra to PC+4 and set PC to label
– Another J-format instruction

Returning:
– “jump register”: set PC to value in register r1

jal label

jr r1

Inf2C Computer Systems - 2010-2011 21

Using a stack for method calls
Nested calls ⇒ must save return address to prevent
overwriting. Solution: use a stack in memory

to push a word:

to pop a word:

call A
…
call B
…
call C

addi $sp,$sp,-4 # move sp down
sw $ra,0($sp) # save r1 on top of stack

sp
(stack
pointer)

C
B
A

lw $ra,0($sp) # fetch value from stack
addi $sp,$sp,4 # move sp up

Addr

Inf2C Computer Systems - 2010-2011 22

Other uses of the stack
Stack used to save caller’s registers, so that they
can be used by the callee
– “caller save” or “callee save” convention

Stack can also be used to pass and return
parameters
– MIPS uses $a0 – $a4 for the first 4 word-length

parameters, and $v0, $v1 for return values

return address

(caller context)

parameters

