
Inf2C Computer Systems - 2010-2011 1

Lecture 2: Data Representation
Data need to be represented in a convenient way
that simplifies:
– common operations: addition, comparison, etc.

How would an algorithm for adding Roman numbers
look like?

– hardware implementation (cheap, fast, reliable
computers)

Data representation is a major part of the
software-hardware interface

Inf2C Computer Systems - 2010-2011 2

Lecture outline

The bit – atomic unit of data
Representing numbers
Representing text

Inf2C Computer Systems - 2010-2011 3

The bit

Acronym for Binary digiT
The smallest amount of meaningful info,
according to information theory
– If only 1 value is possible, there is no information

Disadvantages: too little information per bit,
must use many of them
Advantages: easy to do computation, very
reliable, simple circuits

Inf2C Computer Systems - 2010-2011 4

Natural numbers representation

Positive (unsigned) integers are very simple to
represent in binary

n-1Bit position
MSB

n-2 1 0
Binary:

Decimal: *2n-1+ *2n-2+ *21+ *20

LSB

Most significant bit Least significant bit

Inf2C Computer Systems - 2010-2011 5

Basic operations

01101
+01011

00011

1111

Addition, subtraction with binary numbers is
easy:

01101
−01011

10000

0100

13

11

24
2

Inf2C Computer Systems - 2010-2011 6

Fixed bit-length arithmetic

Hardware cannot handle infinite long bit
sequences
We end up with a few fixed sized data types
– Byte: always 8 bits
– Word: the ‘natural’ unit of access, usually 32 bits

Overflow happens when a result does not fit
– Numbers wrap-around when they become too large
– Comp. arithmetic is modulo 2n, n=number of bits

Inf2C Computer Systems - 2010-2011 7

What about negative numbers?

No special symbols, e.g. +, −, available
Sign-magnitude representation:
– Use 1st bit (MSB) as the sign: 1-negative, 0-positive

Complicates the arithmetic operations
– The actual operation depends on the sign

There is a better way

Inf2C Computer Systems - 2010-2011 8

Two’s complement representation

What is the result of 000 – 001?
…111

The MSB has negative weighting:
n-1 n-2 1 0

Binary:

Decimal: − *2n-1+ *2n-2+ *21+ *20

Arithmetic operations do not depend on the
operands’ signs

Inf2C Computer Systems - 2010-2011 9

2’s complement quirks

The MSB is the sign
Range is asymmetric: −2n-1 to 2n-1-1
There are two kinds of overflows:
– Positive overflow produces a negative number
– Negative underflow produces a positive number

To negate a number
Invert all bits (0 ↔ 1) and add 1, at the LSB
−(−2n-1) overflows!

A-B = A + 2’s complement of B

Inf2C Computer Systems – 2010-2011 10

Converting between data types

Converting from a smaller to a larger representation is
done by sign extension

Example: from byte to short (16 bits):

-2 = 11111110 ⇒ 1111111111111110

(byte) (short)

2 = 00000010 ⇒ 0000000000000010

(byte) (short)

-2 = 1 1 1 1 1 1 1 0 ⇒ ? ? ? ? ? ? ? ? 1 1 1 1 1 1 1 0

2 = 0 0 0 0 0 0 1 0 ⇒ ? ? ? ? ? ? ? ? 0 0 0 0 0 0 1 0

Inf2C Computer Systems - 2010-2011 11

Shifting

Shifting: move the bits of a data type left or right
– Data bits falling off the edge are lost

0s fill up the empty bit places for left shifts
For right shifts, two options:
– Fill with 0: for non-numerical data (or positive integers)
– Fill with the MSB: for 2’s complement numbers

Shift left by n is equivalent to multiplying by 2n

Shift right by n is equivalent to dividing by 2n

Example
-8 = 1 1 1 1 1 0 0 0 >> 2 1 1 1 1 1 1 1 0 = -2

6 = 0 0 0 0 0 1 1 0 >> 2 0 0 0 0 0 0 0 1 = 1

Inf2C Computer Systems - 2010-2011 12

Hexadecimal notation

Binary numbers (and other data) are too long and
tedious for us to use
Hexadecimal (base 16) is very commonly used in
computer programming
Hex digits: 0-9 and A-F
– A=10, B=11, …, F=15

Conversion to/from binary is very easy:
Every 4 bits correspond to 1 hex digit:

Hex is just a convenience, computers use the binary form

1 1 1 1 1 0 0 0

F(15) 8

= 0xF8

Inf2C Computer Systems - 2010-2011 13

Real numbers - floating point
Java’s

IEEE 754:
– example 0.75 in base 10 ⇒ 0.11 in base 2

– Normalized:
0.11 ⇒ 1.1x2-1

– example: 25 in base 10 ⇒ 11001 in base 2 ⇒ 1.1001x24

float (32 bits)
double (64 bits)

mantissa exponent

implict
(always 1)

(2-1 + 2-2 = 0.5 + 0.25 = 0.75)

Inf2C Computer Systems – 2010-2011 14

Floating Point
32 bit:

e.g.,
(0.75)10 → (0.11)2 → (1.1x2-1)2 → 0 01111110 10000000000000000000000

64 bit:
– exponent = 11 bits; significand = 52 bits

Note: processors usually have specialized floating point units and
extra fp registers to perform fp arithmetic

31 30 22 0

sign
(s)

exponent
(exp)

mantissa or significand
(sig)

(-1)s x (1.sig) x 2exp-127

23

Inf2C Computer Systems - 2010-2011 15

Representing characters, strings

Characters need to be encoded in binary too
Operations on characters have simpler requirements
than on numbers, so the encoding choice is not crucial
Most common representation is ASCII
– Each character is held in a byte
– E.g. ‘0’ is 0x30, ‘A’ is 0x41, ‘a’ is 0x61

Java uses Unicode which can encode characters from
many (all?) languages
– 16 bits per character required

Words, sentences, etc. are just strings of characters
– A special character, encoded as 0x00, shows where the string

ends (in C)
– Or the string length is kept with the string itself (in Java)

Inf2C Computer Systems - 2010-2011 16

Summary

Computers use binary representation
2’s complement
Floating point
Characters and strings

