Informatics 2C — Computer Systems
Coursework 2
Deadline: Mon 29 November 2010, 12:00 noon

1 Introduction

This practical is based on material in the Computer Systems thread of the course. Its
aim is to increase your familiarity with the structure and operation of a simple computer
processor. It asks you to write and submit part of a SystemC program which models the
operation of a simple multicycle processor and memory system.

SystemC is essentially a hardware description language. In reality it is a library of
methods based on C++, an object-oriented enhancement of the C programming language.

This course does not teach you SystemC, nor are you advised to learn it by yourselves
at this stage. We are merely using it as a simulation engine because it can effectively model
concurrent operations, closely mimicking the operation of real hardware. The code that
you are required to write will be plain C and will not use any of the SystemC features.
The provided code will obviously use SystemC features but you are not required to learn
how it works. What you need to understand is how simple computer hardware works,
not the details of how to model it using SystemC.

Your answers should be submitted electronically before noon on Monday 29th Novem-
ber (see later in this handout for details of how to do this). This is the second and last
practical for Inf2C Computer Systems course. It is worth 50% of the coursework mark
for Inf2C-CS and 12.5% of the overall course mark. Please bear in mind the guidelines on
plagiarism which are linked to from the Informatics 2 course guide.

Before attempting this coursework, you have to go through the lab script called “Sys-
temC basics” available through the course’s schedule web page. It provides a tutorial on
how to use SystemC and how to view the results of the simulation using gtkwave.

2 The practical

In this practical you complete a SystemC program which models the operation of a simple
processor and memory. The processor is based on the MIPS processor, but with a much
reduced instruction set and its datapath is illustrated in figure 1. All wires shown to be
unconnected in the figure are actually connected to the control unit. It is not shown to
keep the diagram clear. The processor instruction set is described in Appendix B and
includes one non-MIPS instruction specially added for this practical, the halt instruction,
which simply ends the simulation when executed. The halt instruction and one further
instruction, jump, are already implemented for you in the supplied code.

1

[27:0] (=<2

28
G
B 26 wreg_addr_mux
PC
'R f2s:21) a_addr
51232 b_addr
pc_mux IdPC address =]
IR —< A _reg ﬂﬂo
/(fomn | wreg_addr Al
% addr_mux dataOut _ | 31—) a_mux ALU AU
L 2 Register B reg
Memory z File _
< S| . |
IdMAR 3 dataln s — reg_write_data 0o—1 —
:U —
¢ ¢ /(ﬁldREG func
rd wrt ldMDLR reg_write_mux b/ﬁux
IdMDSR
- CSgnExD (<2

Figure 1: The datapath of the processor used in the practical.

Your task is to complete the model of the processor’s control unit, so that it provides
the correct sequence of control signals to the processor datapath to implement fetching
and executing instructions from a small subset of the MIPS instruction set. You must try
to make the processor work as fast as possible, i.e. try to minimise the number of cycles
each instruction needs to complete.

Before starting, you will need to make your own copy of the SystemC files. Download
the file cw2-code . tgz at

http://www.inf.ed.ac.uk/teaching/courses/inf2c-cs/coursework/cw2-code.tgz
Unpack this tar-ball with
tar xzf cw2-code.tgz

It unpacks to two top-level directories, proc containing the code for the processor, and
systemc-2.2.0 containing the SystemC library code, and a symbolic link systemc to the
systemc-2.2.0 directory.

Within the proc directory, you will find a number of SystemC source files, a Makefile,
and two other files, mem1 and mem2, which contain memory maps (small programs in
machine code) for loading into the simulator.

When in the proc directory, the SystemC model can be compiled with the command
make, and the compiled application can be run with the command ./proc memoryfile,
where memoryfile is the name of a memory file to be loaded into the simulated memory.

3 Control unit

As explained in the lectures, the control unit of a multicycle processor is an FSM. Your
task is to complete the code for the control unit of the processor, which is contained in the

function controlUnit: :ctrl_comb(), in the file, controlUnit.cpp. You can ignore func-
tion controlUnit::ctrl.regs() in the same file which deals with initialisation, halting
the simulation, and updating the flip-flops which hold the current state of the machine.

As you can see in the source code, function controlUnit: :ctrl_comb() is essentially a
large switch statement which should provide the right values for the control signals and
the next state of the machine, based on the current state and a few input signals from the
datapath. It models the combinational logic part of an FSM, but it is described using C
code rather than circuit schematics.

The inputs available to the control unit are:

ir The contents of the Instruction Register in the datapath, which holds the current in-
struction being executed. In order to save you the trouble of finding out how to
extract various bit fields from ir using SystemC, the variables opcode and subfunct
are defined for you at the top of the function. They contain the corresponding bit
fields from ir, so you will not need to refer to ir in your code at all.

zero A flag which is true if the datapath ALU output at the end of the previous cycle was
zero, and false otherwise. Note in the datapath that the ALU zero signal is stored
into a flip-flop before it is given to the control unit.

In Appendix A of this handout you will find a complete list of the control signals,
together with the valid values each can take, and the effect that each value has on the
operation of the datapath or memory. You will need to refer to this list to complete the
practical.

As you can see from the provided code, some of these control signals are assigned
default values before the switch statement, which may then be overwritten. (This is not
a problem as function ctrl_comb() runs uninterrupted and only the final values of the
signals are seen by the other blocks). Default values are used here to save typing, as
you do not have to write the value for all control signals for each case. However, you
are encouraged to look into signals that can be set to a specific value for all instructions
as this could lead to circuit improvements. Moreover some of the default values of the
signals provided are conservative. Feel free to change these default values, as long as the
processor still works correctly and with the fewest possible cycles per instruction.

4 Trying it out

Take a look at the file mem1. It contains memory contents to be loaded into memory when
the simulation starts. Lines beginning with a % contain hexadecimal representations of
32-bit values, which are loaded into memory in consecutive words starting at address 0.
All other lines are comments. The file mem1 contains a small program consisting of three
jump instructions and a halt instruction.

Compile the code provided for you, and try ./proc memi. A waveform file, called
waves.vcd, should be created in the same directory, showing the values for all interest-
ing registers and other signals in the system. You can view it using an application called
gtkwave. With the files mem1 and controlUnit.cpp in front of you, together with the con-
trol signal definitions at the end of this handout and their encodings defined in defines.h,
try out . /proc meml. Look at the resulting waveforms, making sure you understand what
the simulation is doing and why.

5 What you have to do

Your task is to extend the implementation of the function ctrl_comb(), so that it imple-
ments all the remaining MIPS instructions described in Appendix B. To do this you will
need first to work out a suitable sequence of operations for each instruction, and then add
code to implement the instruction.

Do not make changes to any other functions, or your submitted code may not work
when we compile and test it with the original remaining functions.

To help you design your code, describe for each instruction what you intend to happen
on each cycle, and write down corresponding lines for the FSM truth table. Include this
design documentation in your controlUnit. cpp file. The provided controlUnit.cpp file
has a suggestion of what this documentation might look like. Examples of FSM truth
tables can be found in the course slides and notes on logic design and in the Henessey and
Patterson textbook. The 2nd and 3rd editions of this textbook also have some discussion
of designing the FSM for a similar multi-cycle processor design.

Once you have this design documentation, it should be fairly straightforward to write
the code itself. Be sure though to add comments to the code to explain any non-obvious
aspects of the code.

You can use the memory file mem2 to test your simulator, but you could also produce
your own memory files and use these for testing.

Submit your controlUnit. cpp file using the following command:

submit inf2 inf2c-cs cw2 controlUnit.cpp

6 Marking

The instructions in the controlUnit. cpp file will be checked for correctness using an auto-
mated script. We will then look at your code to see how clear your design documentation
is, how many cycles each instruction takes, and how appropriately your code is com-
mented.

Note that submitted files that do not compile will be awarded 0 marks. So, make sure
you compile and test your implementation of the instructions.

Appendix A: Interface between the control unit and the dat-
apath/memory

Listed below is each of the control signals driven by the control unit, controlling the op-
eration of the datapath and memory in each clock cycle. Also given below are the valid
values each field can be set to, and the corresponding effects on the operation of the dat-
apath and memory.

Memory controls
boolean mem_rd

true The value n on the Memory Address input is used to address memory, and a mem-
ory read operation is started. The 32-bit word at address n of memory is output.

false Do nothing.

boolean mem_wrt

true The valuen on the Memory Address inputis used to address memory, and the 32-bit
word on the Memory Dataln input is written into memory at address n.

false Do nothing.

Register controls
boolean 1dPC

true The Program Counter is loaded at the end of this cycle.

false Do nothing.

boolean 1dMAR

true The Memory Address Register is loaded at the end of this cycle.

false Do nothing.

boolean 1dIR

true The Instruction Register is loaded at the end of this cycle.

false Do nothing.

boolean 1dMDSR

true The Memory Data Store Register is loaded (from reg. file B_reg output) at the end
of this cycle.

false Do nothing.

boolean 1dMDLR

true The Memory Data Load Register is loaded (from memory) at the end of this cycle.

false Do nothing.

boolean ldReg

true The value on the register file data input (reg_write_data) is written into the register
selected by wreg_addr (see below), at the end of this cycle.

false Do nothing.

Multiplexer controls
byte wreg_addr_mux

Selects which general register is written from the register file data input (reg_write_data)
at the end of this cycle, if 1dREG is true.

WA_RD The IR bit field 15:11 (Rd) provides the address of the register to be written.
WA_RT The IR bit field 20:16 (Rt) provides the address of the register to be written.

WA_31 Register 31 ($ra) is to be written.

byte pc_mux
PC_ALU The ALU output is selected by the PC Multiplexer.

PC_IMM The concatenation of the 4 most significant bits of the PC (which has already been
incremented by 4) with the 26 least significant bits of the IR, shifted left by 2 is
selected by the PC Multiplexer.

byte addr_mux

ADDR_PC The Program Counter output is selected by the Address Multiplexer.

ADDR_MAR The Memory Address Register output is selected by the Address Multiplexer.

byte a_mux

A_PC The Program Counter output is selected by the A Multiplexer.

AREG Register file output A_reg is selected by the A Multiplexer.

byte b_mux

B_REG Register file output B_reg is selected by the B Multiplexer.
B_4 The constant value 4 is selected by the B Multiplexer.

B_0 The constant value 0 is selected by the B Multiplexer.

B_IR_16 The least significant 16 bits of the Instruction Register, sign-extended to 32 bits,
are selected by the B Multiplexer.

B_IR_16X4 The least significant 16 bits of the Instruction Register, multiplied by 4 (i.e.
shifted left by 2) and sign-extended to 32 bits, are selected by the B Multiplexer.

byte reg write mux
RW_ALU The ALU output is selected by the reg_write Multiplexer.

RW_MEM The Memory Data Load Register is selected by the reg_write Multiplexer.

ALU control

byte func

Controls the output the ALU as a function of the ALU inputs A and B. (Operator symbols
used in the notation below have their usual C meanings)

ADD alu = A + B
SUB alu = A - B
AND alu = A & B

OR alu=A | B

EOR alu = A " B

Special fields

There are two special control fields, which do not control the operation of the datapath or
memory, which should also be assigned. These are:

int next_cycle The next cycle number that the control unit should enter when the next
rising clock edge arrives. Essentially this is the next state of the control unit.

boolean halt If thisis set to true, the simulation halts.

Appendix B: Instruction set description

Add

Symbolic representation: add rd, rs, rt.
Adds the contents of registers rs and rt, and stores the result in register rd.

31 26 25 2120 16 15 11 10 6 5 0
y 0x0 \ rs \ rt \ rd \ 0x0 \ 0x20

Subtract

Symbolic representation: sub rd, rs, rt.
Subtracts the contents of registers rt from rs, and stores the result in register rd.

31 26 25 2120 16 15 11 10 6 5 0
y 0x0 \ rs \ rt \ rd \ 0x0 \ 0x22

Add immediate

Symbolic representation: addi rt, rs, n.
Sign extend the 16-bit 2’s complement integer n, add to the contents of register rs, and
store the result in register rt.

31 26 25 21 20 16 15 0
’ 0x8 ‘ rs rt immediate

Load word

Symbolic representation: 1w rt, n(rs).

Sign extend the 16-bit 2’s complement integer n, add to the contents of register rs, and
use the resulting integer to address memory and read the word at that address, and store
in register rt.

31 26 25 21 20 16 15 0
] 0x23 \ rs rt immediate

Store word

Symbolic representation: sw rt, n(rs).

Sign extend the 16-bit 2’s complement integer n, add to the contents of register rs, and
uses the resulting integer to address memory, storing the word in register rt at that ad-
dress.

31 26 25 21 20 16 15 0
’ 0x2b ‘ rs ‘ rt ‘ immediate

Branch on equal

Symbolic representation: beq rt, rs, label.

Compares the contents of registers rs and rt, and if they are equal branch to the address
indicated by label. The address is calculated by the machine as follows: multiply the 2’s
complement immediate (held at bits 15:0 of the instruction) by 4, sign extend to 32-b and
add to the address of the following instruction. This is the address written into the PC if
the comparison is successful.

31 26 25 21 20 16 15 0
’ 0x4 ‘ rs ‘ rt immediate

Branch on not equal

Symbolic representation: bne rt, rs, label.
Compares the contents of registers rs and rt, and if they are not equal branch to the
address indicated by 1abel. The address calculation is the same as for beq.

31 26 25 21 20 16 15 0
] 0x5 \ rs \ rt \ immediate

Jump

Symbolic representation: j target.
Unconditionally jump to the address indicated by target. The target address is calculated
by concatenating the 4 most-significant bits of the address of the following instruction,
with the immediate multiplied by 4.

31 26 25 0
’ 0x2 ‘ immediate

Jump and link

Symbolic representation: jal target.
Save the address of the following instruction in register $ra ($31), and unconditionally
jump to the address indicated by target, which is calculated as in the jump instruction.

31 26 25 0
’ 0x3 \ immediate

Jump register

Symbolic representation: jr rs.
Unconditionally jump to the address in register rs.

31 26 25 2120 16 15 11 10 6 5 0
y 0x0 \ rs \ 0x0 \ 0x0 0x0 0x8

Halt

This final instruction is not a MIPS instruction, but is included for the purposes of the
practical.

Symbolic representation: halt.

Causes the simulated processor to halt.

31 26 25 2120 16 15 11 10 6 5 0
y 0x0 \ 0x0 \ 0x0 \ 0x0 0x0 Oxc

10

