
Tutorial 5 – Solutions Informatics 2B - Learning (HS v1.0)

Tutorial 5: Neural Networks

1. We can write a single matrix equation for the outputs of the network, appending the bias to the
weights (and making x0 = 1), and transposing the training data matrix, to get one column per
training item:

YT = WXT

YT =
[

0.05 0.1 0.2 0.1 0.15 0.05
]


1 1 1
1 0 1
1 1 1
0 1 0
0 0 1
0 1 0


=

[
0.35 0.4 0.5

]
Computing the error signals:

δn = yn − tn

δ1 = 0.35 − 1 = −0.65
δ2 = 0.4 − 0 = 0.4
δ3 = 0.5 − 1 = −0.5

The updated weights after an iteration of gradient descent are:

wnew
i = wi − η

N∑
n=1

δnxni

w0 = 0.05 − 0.01(−0.65 · 1 + 0.4 · 1 − 0.5 · 1) = 0.0575
w1 = 0.1 − 0.01(−0.65 · 1 + 0.4 · 0 − 0.5 · 1) = 0.1115
w2 = 0.2 − 0.01(−0.65 · 1 + 0.4 · 1 − 0.5 · 1) = 0.2075
w3 = 0.1 − 0.01(−0.65 · 0 + 0.4 · 1 − 0.5 · 0) = 0.096
w4 = 0.15 − 0.01(−0.65 · 0 + 0.4 · 0 − 0.5 · 1) = 0.155
w5 = 0.05 − 0.01(−0.65 · 0 + 0.4 · 1 − 0.5 · 0) = 0.046



Tutorial 5 – Solutions Informatics 2B - Learning (HS v1.0)

2. It can be shown easily that the derivative of the sigmoid function g(a) = 1
1+exp(−a) is given as

follows.
dg(a)

da
= g′(a) = g(a) (1 − g(a))

0

0.1

0.2

0.3

0.4

0.5

-6 -4 -2 0 2 4 6

g
’(
a

) 
=

 g
(a

)(
1

-g
(a

))

a

It can be found from the figure of g′(a) that a = 0 gives the the maximum value g(0)(1 − g(0)) =
1
4 = 0.25 and a = ±∞ gives the minimum value lima→±∞ g(a) = 0.

3. First we look at the single sigmoid output.

∂E
∂wi

=
∂E
∂y
·
∂y
∂a
·
∂a
∂wi

∂E
∂y

= −
t
y

+
1 − t
1 − y

=
−(1 − y)t + y(1 − t)

y(1 − y)
∂y
∂a

= y(1 − y) (usual sigmoid derivative)

∂a
∂wi

= xi (as usual)

∂E
∂wi

=
−(1 − y)t + y(1 − t)

y(1 − y)
· y(1 − y) · xi

= (−(1 − y)t + y(1 − t))xi = (y − t)xi

So with a logistic sigmoid transfer function and the negative log probability error function, the
error signal δ = ∂E/∂a = (y− t). The derivative of the sigmoid cancels out. The logistic sigmoid
transfer function corresponds to a two class posterior probability estimation, and the negative
log probability is the ‘natural’ or consistent error function: the network estimates a posterior
probability, and the error function corresponds to directly optimising the parameters to estimate
that (log) probability.

Now the multiclass case. In this case the kth activation ak—and hence the weight wki—influences
the error function through all the output units, because of the normalising term in the denominator.
We have to take this into account when differentiating.



Tutorial 5 – Solutions Informatics 2B - Learning (HS v1.0)

∂E
∂wki

=

C∑
c=1

∂E
∂yc
·
∂yc

∂ak
·
∂ak

∂wki

∂ak

∂wki
= xi(as usual)

∂E
∂yc

= −
tc

yc

Now to look at ∂yc/∂ak we look at two cases, when c=k, and when c , k.

First when c=k, we apply the quotient rule of differentiation:

∂yc

∂ac
=

∑
j exp(a j) · exp(ac) − exp(ac) exp(ac)

(
∑

j exp(a j))2

= yc − y2
c = yc(1 − yc)

And, when c , k:

∂yc

∂ak
=
− exp(ac) exp(ak)

(
∑

j exp(a j))2

= −ycyk

We can combine these using the Kronecker delta δck (δck = 1 if c = k, δck = 0 if c , k):

∂yc

∂ak
= yc(δck − yk) .

Putting these derivatives together in the chain rule we have:

∂E
∂wki

=

C∑
c=1

(
−

tc

yc

)
(yc(δck − yk)) xi

=

C∑
c=1

tc(yk − δkc)xi .

Now, since we have a ‘1-from-C’ output coding, we know that
∑

c tcyk = yk (in fact this holds for
the weaker condition

∑
c tc = 1), thus:

∂E
∂wki

= (yk − tk)xi .

Beautiful! Once again the derivative of the transfer function cancels, and we have the error
signal δk = yk − tk. The softmax is the multiclass counterpart of the logistic sigmoid and is the
natural partner of the negative log probability error function.

Lots of subscripts in this question, so need to take care.

Some other comments:

• Sum-squared error function is not invalidated and is a good ‘general-purpose error function’.
But if you are doing classification, and interpret the outputs as posterior probability
estimates, then it is consistent to maximise the probability (or, in practice, minimise the
negative log probability). And you are rewarded by a nice derivative.



Tutorial 5 – Solutions Informatics 2B - Learning (HS v1.0)

• Don’t be confused by the Kronecker delta which is unrelated to the error signal δ. Sorry
for overloaded notation, but both are standard.

• logs to base e since we have exp in the transfer function.

• Not having the transfer function derivative (y(1 − y)) results in larger derivative values, and
experiments consistently indicate that this leads to faster gradient descent training.

• Remember all the derivatives in the question are for a single training example; you would
use these directly in stochastic gradient descent; otherwise you would sum over the training
set.


