Tutorial 3 — Solutions Informatics 2B - Learning wsvio

Tutorial 3: Naive Bayes and Gaussians

1. The total number of documents in the training set is N =11, with Ny =6, N;=5.

We can estimate the prior probabilities from the training data as:

Ny 6 N, 5
PeS) = N 11’ P(I)_N_ll'

Let ng(w) be the frequency of word w in all documents of class S, giving likelihood estimate
without smoothing and with add-one smoothing:

N ng(w)

Pw|S)= ————,
W)= S s
Bw|S) = ng(w) + 1

VI+ Zeyns(v)”

where V is the vocabulary (set of word types under consideration).

ns(w) Pw|S) Pwl|S) nw) Pw|l) Pw|I)
wi 6 6/36 7/44 1 1/16 2/24

) 0 0/36 1/44 4 4/16 5/24
w3 2 2/36 3/44 3 3/16 4/24
Wy 5 5/36 6/44 1 1/16 2/24
Ws 4 4/36 5/44 1 1/16 2/24
We 6 6/36 7/44 2 2/16 3/24
1% 7 7/36 8/44 3 3/16 4/24
wg 6 6/36 7/44 1 1/16 2/24

We have now estimated the model parameters.

(@) Dy = ws wi we wg Wi Wy We
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Case-1 (no smoothing)

P(D;|S8) = Pws|S) - Pwi]S) - P(wg|S) - P(wglS) - P(wi]S)- Pw,]S) - P(wglS)
—4><6><6><6><6><0><6 =0
36736736736 367 36 36

P(S|Dy) < P(S)P(D;|S) = 0

P(D\|D) = P(ws|I) - P(wy [1) - P(ws| 1) - P(wg|I) - P(wi|I) - P(wz|1) - P(ws|T)

1 1 2 1 1 4 2 24

16716716716 16 °16 16 ~ 16

PUIDY PUPD, |1) )
YT PSPDIIS) + POPDD)

P | D)) < P(S | D), thus we classify D, as 1.

Case-2 (with smoothing)

P(D[S) = P(ws|S) - Pwi|S) - P(ws|S) - P(ws|S) - Pwi]S) - P(W2|S) - P(ws|S)

5 7 7 7 7 1 7 84035 7
—ﬂXaXﬂXﬂXﬂXﬂXa— 247 = 2.63x10

6 84035
P(S|Dy) < PSYPDIIS) = 17—

=144 %107’

PO = P(ws|D) - Pwi 1) - PwglI) - P(ws|I) - P(wi 1) - P(wa|I) - P(we | 1)
1 1 1 1 1 5 1 5
= — X — — B B

i - = - @@ = -7
XX X 1222 %8 ~ 31850406 ~ 0/ X 10

PUIDy) « P PO ]) = — -

_ -8
11 31850496 _ 14x10

P(S|D,) > PUI|D,), thus we classify D; as S.

We have not normalised by P(D,), hence the above are joint probabilities, propor-
tional to the posterior probability. To obtain the posterior:
P(S)P(D|S 1.44x 1077
P(S|D) = (5 PBS) - = 0,67
P(S)P(Dy|S) + P(I) P(Dy | D) 1.44 %1077 +7.14 x 1078
P(I|Dy)=1-P(S|Dy) =0.33

(b) Dy =ws ws wy wy



Tutorial 3 — Solutions

Informatics 2B - Learning wsvio

Case-1 (no smoothing)

P(D,|S) = P(w3|S) - P(ws|S) - Pw2[S) - P(w7]S)
2 40T Ly
36 36 36 36
P(S|D,) < P(S)P(D,|S) = 0
P(Dx|1) = P(ws|I) - P(ws|1) - P(wz|I) - P(w7|I)

3 1 4 3 22 x 3?
164

:1—6X 16X1_6X 16 -
~ P(I)P(D, | 1) _
P(|D,) = P(SYP(D,|S) + PUP(D,|I) =1

Case-2 (with smoothing)

P(D,|S) = Pws|S) - Pws|S) - Pw2|S) - P(wr7]S)
3 05 1 2 30 B
S @ @1 T 9300 - 20X 10
6 30
P(S | Dy) < P(S)P(D,|S) =

. =1. 1073
1T 937024 = 7O * 10
P(wy|I) - P(wr|1)
11 5 1 5

X —

P(D,|I) = P(ws3|I) - P(ws|I) -

—_ = —= —4
6% 1252275 = Toses 8210

5 5
P(I P(D)P(D,|I) = — —— =2.19x107*
(I1Ds) o< P(I) P(D1|1) 1 10368 9x10
P\ D,) > P(S | D), thus we classify D, as 1.

We have not normalised by P(2), hence the above are joint probabilities, propor-
tional to the posterior probability. To obtain the posterior:

~ P(S) P(D,|S)
P(S |D») = P(S) P(D|S) + P(I) P(D,|I)

1.75 x 1073
=0.074
1.75x 1075 +2.19 x 10~

1-P(S|D,) =0926

P Dy)
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2. (a) Since rand() generates samples based on a uniform distribution on the interval (0, 1), we

can assign samples on (0,0.5) to "H’ and, those on [0.5, 1) to T’ to simulate tossing a fair
coin, which is illustrated in Figure 2 (a).

Here is a sample Matlab sample:

N = 10; % the number of trials
threshold = 0.5;
for i =1 : N

v = rand ();

if (v < threshold)
x = 'H’;
else
x = 'T’;
end
fprintf (1, "%s ’, X);
end

fprintf (1, ’\n’);

(b) We now need to change the widths of the intervals so that they correspond to P(H) = 0.6

and P(T) = 0.4, which are shown in Figure 2 (b). The Matlab code is basically the same as
the above, except ’threshold = 0.6” now.

(c) We split the interval (0, 1) into six disjoint regions, each of which corresponds to P(i),i =
1,...,6. Here is a sample Matlab code:

N = 10; % the number of trials
P =10.05, 0.1, 0.14, 0.19, 0.24, 0.28]; % P(X)
n_faces = length(P);

thresholds = cumsum(P) / sum(P); % get cumulative sum of P()
for i =1 : N
v = rand ();
x = n_faces;
for k = 1 : n_faces -1
if( v < thresholds (k) )
x = k;
break ;
end
end

fprintf (1, "%d ’, x);
end
fprintf (1, ’\n’);
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P(H) P(T)

0 0.5 1

Figure 2 (a)
P(H) P(T)

0 0.6 1
Figure 2 (b)

P(1) P(2) P(3) P4) P(5) P(6)

0 0.05 0.15 0.29 0.48 0.72 1
Figure 2 (c)

(a) The sketch will look like this:

1.4 w
— =0, o°=1
—_— 2_
1.2} h=z, o=
—u=-2, 6°=1
] —— =0, 6°=10
— =0, 6°=0.1
< 0.8 i
=
= 0.6) |
0.4 1
0.2f i

(b) As the pdf of a normal distribution is given by

1
2\ _
pxlp ) = —— exp( o

_(x—u)z)

it is easy to see that the width of the curve scales linearly with o (not %), and the height
of the peak is proportional to the reciprocal of 0. Note that the exact height is 1/ (0' \/E),
which can be greater than 1 for small 0. See the figure above:

5
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(c) Here is a sample Matlab code:

% Parameters of normal distributions to plot
% Each line represents the two paramters (mean, variance)
params = [

13

xrange = [-8, 8]; % x-range
np = 200; % plotting resolution, i.e. number of points

x = linspace (xrange (1), xrange(2), np);
n_distributions = size (params,l);
= zeros(n_distributions , length(x));

s = cell(n_distributions , 1);
or i =1 : n_distributions
m = params(i,l); var = params(i,2);
Y(i,:) = 1/(sqrt(2«pixvar)) * exp(—(x-m)."2 ./ (2xvar));
X(1i,:) = Xx;
ss{i} = sprintf (’\\mu=%g, \\sigma™2=%g’, m, var);
end

plot(X’, Y’, ’linewidth’, 2);

set(gca, ’fontsize ', 14);

xlabel(’x’, ’fontsize’, 16);

ylabel (’N(x; \mu, \sigma“2)’, ’fontsize’, 16);

B

legend (ss, ’fontsize’ , 14);

4. (a) o A o
,A,:N;xn, z:N;(xn—m(xn—mT
L[ 1 3 3 _ (2
'u_Z oot o T 3 =15

Subtracting the mean from each samples gives:

-L-D%  (=1L,0)"% (Lo (1,1

>
Il

I
= Bl= B

42\ (1 12
2 2) T\ 12 12)-
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(b) Let R = (p;;) to denote the correlation matrix.

(c) Examples of coutours are shown below, where (a) shows the contours drwan with Matlab’s
contour(), (b) shows the contours for standard deviations, 1, 2, and 3, and the two principal
components, whose slopes are 0.618 and -1.618, respectively.

(a)
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(b)

(d) The log likelihood of D-dimensional Gaussian distribution is given as

D 1 1
In p(x|p. E) = == In(2m) - = In[Z] - (x -wW'Ex—p).

In the present case, D =2, X = (

1 1/2
1/2 1/2 ) °

| =

=

1
e
2 -2
-2 4)'

For z = (2, 1)7, the 3rd term of the above log likelihood is gieven as follows.

-2

-3((3

1

2
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|
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S

Inpz|p,X)=-In@Rr)+In2-2 = —In(x) -2 ~ —3.1447.
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(e) We can still estimate the mean vector, covariance matrix, and correlation matrix, but the
deteminant of the covariance matrix is zero. As a result, the inverse of the covariance
matrix does not exist, and we are unable to apply the Gaussian pdf for 2D to find the log
likeloood of z. ( The zero determinat means rank(X) < 2, which can be confirmed by the
fact that the two samples lie in a single line in 2D. You can generalise this to D-dimensional
case, so that |X| = 0 for N < D, where N denotes the number of samples. )

5. First, we show that the mean is calculated correctly, where m,, is the mean of the first n values,
and r,, is defined as

Iy = Xy — Ny (1)
1 n—1
my—1 = Xi
n—1
i=1
n
1
m, = Z Xi
i=1
n—1
1 X
= - X+ —
n i=1
n—1 Xy
= my_1+ —
1 X
= Moy = =My + —
n n
Xp — My
=my1+——-
Tn
=my_1+—. (2)
n

Now for variance; define n times the variance as S = Y1, (x; — m)*.

As before, taking m,, to be mean of first n values. Defining S, to be n times the variance for first
n values, that is:

Sn= Z (o = my)?
i=1

= > (G =) + (my = my))?
i=1

= > = D = m Y +2 ) (= my )y = my) (3)
i=1 i=1 i=1

Taking each of the three terms on the RHS in turn. The first term may be written, using (I)):

n—1

n
2 2 2
ZMﬂwo=Zm—mﬂ+m—md
i=1 i=1

2
= Sn—l + (-xn - mn—l)

=S, 1+ “)
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From (2)) we can write:
T'n
my —nmy_1 = —. (5)
n

We can use this to rewrite the second term:
n
2 2
Z(mn—] - mn) = n(mn—l - mn)
i=1

(6)

S |=\I\)

And the third term, again using (5):

23 (6 = my )y = my) = 2y —my) Y (%= my )
i=1 i=1

n

= N = me)

i=1

= = (7)

Substituting (@), (6) and [7)into (3):

2 Iy n

Sn=8Sp1+r,+——
n

(n-1)
n

2
Ty

:Sn—l +

=S, +(1 - l)r,i. (8)



