
Tutorial 2 – Solutions Informatics 2B - Learning (HS v1.0)

Tutorial 2: Introduction to statistical pattern recognition

1. The easiest way to do this is by plotting the points on a graph.

Let the points be PA1 to PA4 and PB1 to PB4. The distances from the new point P(2,3) to these
points are:

d(P, PA1) =
√

(2 − 0)2 + (2 − 2)2 = 2

d(P, PA2) =
√

(2 − 0)2 + (2 − 4)2 = 2
√

2

d(P, PA3) =
√

(2 − 1)2 + (2 − 2)2 = 1

d(P, PA4) =
√

(2 − 2)2 + (2 − 3)2 = 1

d(P, PB1) =
√

(2 − 2)2 + (2 − 1)2 = 1

d(P, PB2) =
√

(2 − 3)2 + (2 − 1)2 =
√

2

d(P, PB3) =
√

(2 − 3)2 + (2 − 3)2 =
√

2

d(P, PB4) =
√

(2 − 4)2 + (2 − 4)2 = 2
√

2

k-nearest neighbour classification:

k = 3: The 3 nearest points are PA3, PA4 and PB1, so P gets class A.

k = 5: The 5 nearest points are PA3, PA4, PB1, PB2 and PB3, so P gets class B.

2. Let X be the variable which denotes mathematician m or engineer e. We know that, at the party:

P(X =m) = 0.2
P(X =e) = 0.8

Let S be the variable denoting shoe-staring behaviour, S =1 denotes staring at shoes, S =0 not
staring at shoes. Then

P(S =1 | X =m) = 0.6
P(S =0 | X =m) = 0.4
P(S =1 | X =e) = 0.1
P(S =0 | X =e) = 0.9

We want to compute P(X =m | S =1). Use Bayes’ Theorem:

P(X =m | S =1) =
P(S =1 | X =m) P(X =m)

P(S =1)

=
0.6 · 0.2
P(S =1)

=
0.12

P(S =1 | X =m) P(X =m) + P(S =1 | X =e) P(X =e)

=
0.12

0.6 · 0.2 + 0.1 · 0.8

=
0.12
0.20

=
3
5
.
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If you just wanted to know whether it was more probable that you were talking to a mathematician
than an engineer, you could compute the odds:

P(X =m | S =1)
P(X =e | S =1)

=
P(S =1 | X =m) P(X =m)/P(S =1)
P(S =1 | X =e) P(X =e)/P(S =1)

=
P(S =1 | X =m) P(X =m)
P(S =1 | X =e) P(X =e)

=
0.6 · 0.2
0.1 · 0.8

=
0.12
0.08

=
3
2
.

3. We have two random variables D (for disease) and T (for test).

D=1 means the patient has the disease, D=0 means they do not.

T =1 is a positive test, T =0 is a negative test,

We can write the information in the question as:

P(T =1 | D=1) = 0.99
P(T =0 | D=0) = 0.95

P(D=1) = 0.01

Since a there are only two outcomes having the disease (or not) and testing positive (or not) we
can also write:

P(T =0 | D=1) = 1 − P(T =1 | D=1) = 0.01
P(T =1 | D=0) = 1 − P(T =0 | D=0) = 0.05

P(D=0) = 1 − P(D=1) = 0.99

(a) What percentage of subjects will test positive?

Use the law of total probability to calculate the number who test positive:

P(T =1) = P(T =1,D=1) + P(T =1,D=0)
= P(T =1 | D=1) P(D=1) + P(T =1 | D=0) P(D=0)
= 0.99 × 0.01 + 0.05 × 0.99
= 0.06 × 0.99

P(T =1) = 0.0594

(b) Given that a subject tests positive, what is the posterior probability that they have the
disease?
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Use Bayes’ Theorem to find the posterior probability of having the disease given a positive
test:

P(D=1 | T =1) =
P(T =1 | D=1) P(D=1)

P(T =1)

=
0.99 × 0.01
0.06 × 0.99

P(D=1 | T =1) =
1
6

4. We can summarise the training data as follows, and estimate the likelihoods as relative frequen-
cies:

R T D n(C =1) P(x | C =1) n(C =0) P(x | C =0)

0 0 0 1 0.05 6 0.3
0 0 1 1 0.05 3 0.15
0 1 0 2 0.1 4 0.2
0 1 1 1 0.05 1 0.05
1 0 0 3 0.15 2 0.1
1 0 1 3 0.15 3 0.15
1 1 0 4 0.2 0 0
1 1 1 5 0.25 1 0.05

Classify the test data by computing the posterior probabilities. If P(C =1 | X) > 0.5, classify as
C =1, else classify as C =0 (since it is a two class problem).

P(C =1 | X) =
P(X | C =1) P(C =1)

P(X | C =1) P(C =1) + P(X | C =0) P(C =0)

P(C =1 | x1) =
0.25 · 0.25

0.25 · 0.25 + 0.05 · 0.75

=
0.0625

0.1
=

5
8

P(C =1 | x2) =
0.15 · 0.25

0.15 · 0.25 + 0.1 · 0.75

=
0.0375
0.1125

=
1
3

P(C =1 | x3) =
0.1 · 0.25

0.1 · 0.25 + 0.2 · 0.75

=
0.025
0.175

=
1
7

So classify x1 as C =1, and x2 and x3 as C =0.

Although the training data happens to balanced (and we don’t know how it was collected), it is
the case that that the priors are not equal, and this makes a difference (e.g., in the classification
of x2).
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Directly estimating the likelihood is possible if we have a limited number of feature vectors
23 =8 in this case. But if the feature dimension increases (e.g., if we have 10 binary dimensions,
then we have 210 = 1024 possible feature vectors) or the number of possible values increases
(e.g., if we our 3 attributes can each take 5 possible values we have 53 = 125 possible feature
vectors). The more possible feature vectors we have the more training data we need to estimate
P(X |C). The example of this question already has problems with limited data: we estimate
P(X = (1 1 0) | C =0) = 0, which is surely an underestimate—just because we do not observe
something in a few tens of examples does not mean it will never happen.

One approximation to cope with the ‘curse of dimensionality’ is Naive Bayes, which treats each
input dimension independently, i.e. in this case it assumes P(R,T,D) = P(R) P(T ) P(D)—fewer
probabilities to estimate, but a big approximation. This is the topic of this week’s learning
lectures.

5. The objective function E can be defined as

E =
1
N

N∑
n=1

(ẑn − zn)2 =
1
N

N∑
n=1

(axn + byz + c − zn)2 .

Taking the partial derivaties of E with respect to a, b, and c yields

∂E
∂a

=
2
N

N∑
n=1

{(axn + byn + c) − zn}xn

=
2
N

N∑
n=1

(ax2
n + bxnyn + cxn − znxn)

∂E
∂b

=
2
N

N∑
n=1

{(axn + byn + c) − zn}yn

=
2
N

N∑
n=1

(axnyn + by2
n + cyn − ynzn)

∂E
∂c

=
2
N

N∑
n=1

{(axn + byn + c) − zn} .

By making them equal to 0 and ignoring some irrelevant coefficientes, we get the following
system of linear equation in matrix form:

∑N
n=1 x2

n
∑N

n=1 xnyn
∑N

n=1 xn∑N
n=1 xnyn

∑N
n=1 y2

n
∑N

n=1 yn∑N
n=1 xn

∑N
n=1 yn

∑N
n=1 1




a

b

c

 =


∑N

n=1 znxn∑N
n=1 ynzn∑N

n=1 zn

 .
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