
Inf2B Algorithms and Data Structures Informatics 2B (KK1.3)

Tutorial 7: Sorting and Graphs

(1) Suppose we have an array A with n distinct comparable keys. We define the
median to be the key m such that bn/2c keys in A are strictly less than m and
dn/2e of them are greater than or equal to m. (Intuitively speaking m is in the
middle of the keys if ordered.)

(a) Suppose we have an algorithm findMedian that finds the median of an
array in time M(n). We use this to choose the partition element of quick-
Sort, otherwise the algorithm is as before. Call this variant quickSortM.

i. What are the sizes of the two partitions produced at top level?
ii. Write down the recurrence for the runtime T (n) of quickSortM.
iii. Suppose we have a version of findMedian that runs in time ⇥(n) does

this help with the worst case runtime of quickSort?
Hint: Use the Master Theorem.

iv. [Hard.] Describe an algorithm for finding the median in time ⇥(n).
Note: Do not spend a great deal of time on this. There is a recursive
algorithm that is discussed in [CLRS]. It is worthwhile spending 10
or 15 minutes thinking about how you might begin to produce such
an algorithm. If you have time and feel you are succeeding then go
further.

(2) Design an algorithm that sorts any 4 inputs using only 5 comparisons.

Is this the best possible? Generalise the argument for this part to show that
sorting n items requires ⌦(nlg n) comparisons (if your reasoning for the first
part is on the right lines then the general version is quite easy).

NOTE: We are given nothing about the inputs other than the means to com-
pare any two and decide their relative order.

For the first part use partial order diagrams to guide your design. At the start
we know nothing about the relative ordering of the inputs so our diagram is:

A[0] A[1] A[2] A[3]

(we have assumed that the inputs are given in an array A). Each comparison
we make tells us something about the ordering of the given elements. We
might as well compare A[0] with A[1]. After this we have a partial order

l1

✏✏
s1 A[2] A[3]

Where l1 is the larger of the two compared elements and s1 the smaller. The
remaining problem is to choose three more comparisons that get us to the

1

Inf2B Algorithms and Data Structures Informatics 2B (KK1.3)

total order.
·

✏✏
·

✏✏
·

✏✏
·

where the dots stand for the appropriate elements A[0], A[1], A[2], A[3] with the
largest at the top then the next largest etc.

For the second part consider the following:

(a) Each comparison leads to one of two outcomes, so the sequence of com-
parisons along with the possible decisions at each stage can be pictured
as a complete binary tree, the decision tree. A path from the root to a
leaf for a given input gives us the total ordering of that input. (At the
root we know nothing about the partial order as we move towards a leaf
we know more and more till we have the total order at the leaf.)

(b) Deduce that the number of leaves of the decision tree must be at least
as large as the number permutations of the input (the tree picks out the
correct one for any given input).

(c) How many permutations of the input are there?

(d) Now put the two preceding parts together to deduce the lower bound.

(3) For this question we work with undirected graphs. A graph G is said to be
bipartite if its vertices can be put into two disjoint sets V1, V2 such that no
edge has both endpoints in V1 or both in V2.

(a) Draw a simple example of a graph that is bipartite and one that is not.

(b) Describe an algorithm that takes a graph G and:

• if G is bipartite the algorithm assigns the vertices to V1 or V2;
• if G is not bipartite the algorithm reports this.

Your algorithm should run in time ⇥(n + m) where n is the number of
vertices of the graph and m is the number of edges.
Take care to choose an appropriate representation of the graph (you
may assume that it allows each vertex to be marked with V1 or V2 as
appropriate.
Note: You are not required to prove the correctness of your algorithm, of
course it must be correct! It is probably best to describe your algorithm
in clear English (using any appropriate ones form the notes as sub-
algorithms).

(4) Consider the following part of an exam question and an “answer” given.

2



Inf2B Algorithms and Data Structures Informatics 2B (KK1.3)

Question: Explain how to check if a binary search tree T contains a vertex
with a given key k.

Answer: Use DFS or BFS. Each time you visit a vertex check if its key is
equal to k. If it is equal then return TRUE otherwise return FALSE once the
search finishes (all the vertices have been visited).

The algorithm given in the “answer” certainly returns the correct result but
in fact it is inept. Putting that aside, it fails badly in a very important sense.
Explain this by reference to the runtime; it will be helpful to prove that a
tree with n � 1 vertices has exactly n� 1 edges (use induction). Note that we
do not consider leaves as vertices and so there are no edges going to them.
(Sometimes in diagrams we show the leaves explicitly and join them to the
relevant internal vertices just to be clear but in a computer implementation
the leaves are just null pointers so a search does not follow any edges to
leaves).

3


