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Tutorial 5: Neural Networks

1. We have a 5 input, single output single layer network with weights W

W =
[

0.1 0.2 0.1 0.15 0.05
]

and bias = 0.05, where a linear activation function is assumed.

We have 3 training examples, (X,T), expressed as a matrix, one row per training item:

X =


1 1 0 0 0
0 1 1 0 1
1 1 0 1 0

 T =


1
0
1



What are the weights after one iteration of gradient descent, with learning rate η=0.01?

2. Find the first-order derivative of the logistic sigmoid function, and sketch a graph of the derivative.
What are the maximum and minimum values of the derivative and when they are achieved?

3. Consider a single-layer network with a single output y with a logistic sigmoid transfer function.

y = g(a) =
1

1 + exp(−a)

This is used for a two-class problem with classes C1 (denoted by target variable t=1) and C2

(denoted by t=0). We showed in the notes that in the case of a logistic sigmoid transfer function
we can interpret y as the conditional probability P(C1 |x) and (1 − y) as P(C2 |x), where x is the
input vector.

The target t is a binary variable. We know that, given x, the probability of t=1 is P(t=1 | x) =
P(C1 |x) = y; likewise we have P(t=0 | x) = P(C2 |x) = 1−y. We can combine this information
and write the distribution of the target t in the form:

P(t | x,W) = yt(1 − y)1−t

This is a Bernoulli distribution, which we met earlier. Note that we have also explicitly shown
the dependence on the weights. We can write the log probability:

ln P(t | x,W) = t ln y + (1 − t) ln(1 − y)

We can use this to optimise the weights W to maximise the log probability—or to minimise the
negative log probability. We can do this by writing the error function as follows:

E(W) = −(t ln y + (1 − t) ln(1 − y)) .

This is the error for a single training example, denoted as En in the notes. To avoid clutter the
superscript n is ignored in this question

If we want to train by gradient descent, we need the derivative ∂E/∂w j (where w j connects the
jth input to the single output). What is the expression for this derivative? Compare it with the
derivative obtained when the sum square error function is used.
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Now consider the C class case in which we have the usual “1-from-C” coding scheme, and in
which the kth output yk is interpreted as P(Ck |x). In this case the negative log probability error
function is:

E(W) = −
C∑

k=1

tk ln yk

If the transfer function for the output units is the softmax:

yk =
exp(ak)∑C

j=1 exp (a j)

then what is the expression for the derivative ∂E/∂wk j in this case? Comment on your answer.
(This is a slightly trickier derivative, remember that a particular yk depends on all the a j.)


