Tutorial 2: Introduction to statistical pattern recognition

1. Given a two dimensional space with the following dataset:

Class A: $\quad(0,2), \quad(0,4), \quad(1,2), \quad(2,3)$
Class B: $\quad(2,1), \quad(3,1), \quad(3,3), \quad(4,4)$
Classify a new point $(2,2)$ using k-nearest neighbour classification using Euclidean distances and $k=3$ and $k=5$.
2. 60% of mathematicians stare at your shoes when they meet you, but only 10% of engineers do. You are at an exciting party composed entirely of mathematicians and engineers. 80% of the people there are engineers. You meet someone who stares at your shoes. What is the probability that they are a mathematician?
3. A screening test is devised for a disease. It seems that the test is very accurate: 99% of people with the disease test positive; 95% of people who do not have the disease test negative. Of those who are given the test, 1% actually have the disease.
(a) What percentage of subjects will test positive?
(b) Given that a subject tests positive, what is the posterior probability that they have the disease?
4. Consider a fictitious medical condition C, which is either present $(C=1)$ or absent $(C=0)$ in a subject. The only information we have about a subject is whether they have a rash $(R=1)$, have a temperature $(T=1)$, or are dizzy $(D=1)$. Thus we have a 3-dimensional feature vector, (R, T, D). If we have the following information about a subject: $R=1, T=0, D=1$, then the feature vector is $\mathbf{X}=(1,0,1)$.

Training data are available from 40 subjects, shown in figure 1 (overleaf). Using this training data, estimate the likelihoods
$P(\mathbf{X}=(0,0,0) \mid C=1), \ldots, P(\mathbf{X}=(1,1,1) \mid C=1), \ldots, P(\mathbf{X}=(0,0,0) \mid C=0), \ldots, P(\mathbf{X}=$ $(1,1,1) \mid C=0)$.

The following test data are observed:

$$
\mathbf{x}_{1}=(1,1,1), \quad \mathbf{x}_{2}=(1,0,0), \quad \mathbf{x}_{3}=(0,1,0) .
$$

It is known that the prior probability of the condition is $P(C=1)=0.25$. To which class should each test vector be classified?

Comment on this approach to classification if we had a situation with a 10 -dimensional feature vector, or if we have a situation where each input dimension has 5 possible values rather than 2 .

Inputs			C	Inputs			C
R	T	D		R	T	D	
0	1	0	0	1	0	0	0
1	1	1	1	0	0	0	0
0	0	0	0	1	0	1	1
1	0	0	1	0	1	0	1
1	1	0	1	1	1	1	1
0	0	0	0	1	0	1	0
1	1	1	0	0	0	0	0
0	1	1	1	1	0	1	0
1	0	0	0	1	0	0	1
1	1	1	1	0	0	1	0
1	0	1	0	1	1	0	1
1	0	1	1	0	1	1	0
1	1	0	1	1	0	1	1
0	1	0	1	0	1	0	0
0	1	0	0	0	0	0	0
1	1	1	1	1	1	0	1
0	0	0	0	0	0	1	0
0	0	1	0	1	0	0	1
1	1	1	1	0	1	0	0
0	0	0	1	0	0	1	1

Figure 1: Training data for question 4 . Three input dimensions rash (R), temperature (T), dizzy (D) output class (C). All variables are binary.
5. This is an extension of the line of best fit discussed in Section 5.5.3 in Lecture Note 5 to a 3D case. Consider a set of N observations $\left\{\mathbf{p}_{n}\right\}_{1}^{N}$ in a 3D space, where $\mathbf{p}_{n}=\left(x_{n}, y_{n}, z_{n}\right)^{T}$, for which we would like to find the best fit plane $z=a x+b y+c$. Derive the system of linear equations in a, b, and c. (NB: It is more general to define a plane as $a x+b y+c z+d=0$, but we here consider a simpler version.)

