
Note 12 Informatics 2B - Learning

Multi-Layer Neural Networks

Hiroshi Shimodaira∗

January-March 2020

In the previous chapter, we saw how single-layer linear networks could be generalised by applying an
output activation function such as a sigmoid. We can further generalise such networks by applying a
set of fixed nonlinear transforms φ j to the input vector x. For a single output network:

y(x,w) = g


M∑

j=1

w jφ j(x)

 . (12.1)

Again g is a nonlinear activation function such as a sigmoid. If the functions φ j(x) are fixed and
non-adaptive they are sometimes referred to as basis functions. Using such basis functions broadens
the class of available discriminant functions. Our goal in this chapter is to investigate how to make
these basis functions adaptive: that is to have their own parameters (e.g., another weight matrix) that
may be estimated automatically from a training data set.

Given enough fixed basis functions, and infinite training data, it is possible to approximate any
continuous function. However, for finite datasets, ‘Deep’ networks, which use parameterised basis
functions, often work better than ‘shallow’ networks, which have a large number of fixed basis
functions.

12.1 Multi-layer Perceptrons

In this section we build up a multi-layer neural network model, step by step. This multi-layer network
has different names: multi-layer perceptron (MLP), feed-forward neural network, artificial neural
network (ANN), backprop network.1

The first layer involves M linear combinations of the d-dimensional inputs:

b j =

D∑

i=0

w(1)
ji xi , j = 1, 2, . . . ,M . (12.2)

As before x0 =1, with the weights leading out from it corresponding to the biases. The quantities b j

are called activations, and the parameters w(1)
ji are the weights. The superscript ‘(1)’ indicates that this

is the first layer of the network. Each of the activations is then transformed by a nonlinear activation
function g, typically a sigmoid:

z j = h(b j) =
1

1 + exp(−b j)
(12.3)

∗ c©2014-2020 University of Edinburgh. All rights reserved. This note is heavily based on notes inherited from Steve
Renals and Iain Murray.

1MLP is probably the most frequently used name, although it is not strictly accurate. The perceptron is a single layer
network with discontinuous step function nonlinear activation functions, rather than the continuous nonlinear activation
functions used here.

1

Note 12 Informatics 2B - Learning

+

Inputs

x0 x1 xD

Bias

+

+ +

Hidden

Outputs

Bias
z0 z1 zM

yKy1

w(1)MD
w(1)10

w(2)10 w(2)KM

Figure 12.1: Network diagram for a multi-layer perceptron (MLP) with two layers of weights.

The outputs z j correspond to the outputs of the basis functions in Equation (12.1). In the context of
neural networks, the quantities z j are interpreted as the output of hidden units—so called because they
do not have values specified by the problem (as is the case for input units) or target values used in
training (as is the case for output units).

In the second layer, the outputs of the hidden units are linearly combined to give the activations of the
K output units:

ak =

M∑

j=0

w(2)
k j z j k = 1, 2, . . . ,K . (12.4)

Again z0 =1, corresponding to the bias. This transformation is the second layer of the neural network
parameterised by weights w(2)

k j . The output units are transformed using an activation function; again a
sigmoid may be used:

yk = g(ak) =
1

1 + exp(−ak)
, (12.5)

or for multiclass problems, a softmax activation function:

g(ak) =
exp(ak)∑K
`=1 exp(a`)

.

These equations may be combined to give the overall equation that describes the forward propagation
through the network, and describes how an output vector is computed from an input vector, given the
weight matrices:

yk = g


M∑

j=0

w(2)
k j h


D∑

i=0

w(1)
ji xi



 (12.6)

This is illustrated in Figure 12.1.

2



Note 12 Informatics 2B - Learning

12.2 MLP Training: Back-propagation of error

Similar to single-layer neural networks, we can train a network using gradient descent. This involves
defining an error function E, and then evaluating the derivatives ∂E/∂w(2)

k j and ∂E/∂w(1)
ji . The evaluation

of these error derivatives proceeds using a version of the chain rule of differentiation, referred to as
back-propagation of error, or just backprop.

When training single-layer neural networks, the error gradients are the product of the derivative of the
error at the output of the weights and the value at the input to the weight. This interpretation is still
possible for the hidden-to-output weights w(2)

k j , for which a target output is available and the input is
obtained from the hidden units. However target values are not available for hidden units, and so it is
not possible to train the input-to-hidden weights in precisely the same way. This is sometimes called
the credit assignment problem: what is the ‘error’ of a hidden unit? how does the value of a particular
input-to-hidden weight affect the overall error? The solution to this problem is found by systematically
deriving expressions for the relevant derivatives using the chain rule of differentiation.

12.2.1 Error function

To train an MLP we need to define an error function. Again we use the sum-of-squares error function,
obtained by summing over a training set of N examples:

E =

N∑

n=1

En (12.7)

En =
1
2

K∑

k=1

(ynk − tnk)2 . (12.8)

The values of ynk may be computed for each pattern using the MLP forward propagation Equation (12.6).
To avoid clutter, we’ll drop the ‘(1)’ and ‘(2)’ superscripts when writing down weights.

To obtain the overall error gradients, we sum over the training examples:

∂E
∂wk j

=

N∑

n=1

∂En

∂wk j
(12.9)

∂E
∂w ji

=

N∑

n=1

∂En

∂w ji
. (12.10)

3

Note 12 Informatics 2B - Learning

12.2.2 Hidden-to-output weights

First we would like to compute the error gradients for the hidden-to-output weights, ∂En/∂wk j. Now
we can write En in terms of these weights:

En =
1
2

K∑

k=1

(g(ank) − tnk)2

=
1
2

K∑

k=1

g


M∑

j=0

wk jzn j

 − tnk


2

. (12.11)

The derivatives of the error with respect to wk j can be broken down as follows:

∂En

∂wk j
=
∂En

∂ank

∂ank

∂wk j
. (12.12)

The gradient of the error En with respect to the activations ank is often referred to as the error signal
and given the notation δnk, analogous to what we had for single layer neural networks.

δnk =
∂En

∂ank
(12.13)

And since:
∂ank

∂wk j
= zn j (12.14)

we may substitute Equation (12.13) and Equation (12.14) into Equation (12.12) to obtain:

∂En

∂wk j
= δnk zn j (12.15)

where:
δnk =

∂En

∂ynk
· ∂ynk

∂ank
= (ynk − tnk) g′(ank) , (12.16)

similar to single-layer neural networks with a nonlinear activation function.

4



Note 12 Informatics 2B - Learning

12.2.3 Input-to-hidden weights

Now we would like to compute the error gradients for the input-to-hidden weights, ∂E/∂w ji. To do
this we need to make sure that we take into account all the ways in which hidden unit j (and hence
weight w ji) can influence the error. To do this let’s look at δn j, the error signal for hidden unit j:

δn j =
∂En

∂bn j

=

K∑

k=1

∂En

∂ank

∂ank

∂bn j

=

K∑

k=1

δnk
∂ank

∂bn j
. (12.17)

Since hidden unit j can influence the error through all the output units (since it is connected to all of
them), we must sum over all the output units’ contributions to δn j. We need the expression for ∂ank/∂bn j,
obtained by differentiating Equation (12.4) and the hidden unit activation function (Equation (12.3)):

∂ank

∂bn j
=
∂ank

∂zn j

∂zn j

∂bn j

= wk j h′(bn j) . (12.18)

Substituting Equation (12.18) into Equation (12.17) we obtain:

δn j = h′(bn j)
K∑

k=1

δnk wk j . (12.19)

This is the famous back-propagation of error (backprop) equation. By applying the chain rule of
differentiation, backprop obtains the δ values for hidden units by ‘back-propagating’ the δ values of
the outputs, weighted by the hidden-to-output weight matrix. This is illustrated in Figure 12.2. The
derivatives of the input-to-hidden weights can thus be evaluated using:

∂En

∂w ji
=
∂En

∂bn j

∂bn j

∂w ji
= δ j xi . (12.20)

This approach can be recursively applied to further hidden layers.

5

Note 12 Informatics 2B - Learning

Outputs

Hidden units

z j

xi

w(2)
1 j w(2)

! j

δ!δ1

w(1)
ji

yKy!y1

w(2)
K j

δj = h′(bj)
∑

!

δ!w!j

δK

Figure 12.2: Back-propagation of error signals in an MLP

12.2.4 Back-propagation algorithm

The back-propagation of error algorithm is summarised as follows:

1. Apply the N input vectors from the training set, xn, to the network and forward propagate using
Equation (12.6) to obtain the set of output vectors yn

2. Using the target vectors tn compute the error E using Equation (12.7) and Equation (12.8).

3. Evaluate the error signals δnk for each output unit using Equation (12.16).

4. Evaluate the error signals δnk for each hidden unit using back-propagation of error (Equa-
tion (12.19)).

5. Use Equation (12.15) and Equation (12.20) to evaluate the derivatives for each training pattern,
obtaining the overall derivatives using Equation (12.9) and Equation (12.10).

6


