
Note 9 Informatics 2B - Learning

Classification with Gaussians

Hiroshi Shimodaira∗

January-March 2020

In the previous chapter we looked at probabilistic models of continuous variables; in particular we
introduced the Gaussian (Normal) probability distribution, probably the most important probability
distribution for continuous variables.

9.1 Classification

As before we use Bayes’ theorem for classification, to relate the probability density function of the
data given the class to the posterior probability of the class given the data.

First we consider the univariate case, with a continuous random variable x, whose pdf, given class C = k,
is a Gaussian with mean µk and variance σ2

k . Using Bayes’ theorem we can write:

P(Ck | x) =
p(x |Ck) P(Ck)

p(x)
∝ p(x |Ck) P(Ck)

∝ N(x; µk, σ
2
k) P(Ck)

∝ 1√
2πσ2

k

exp
(−(x − µk)2

2σ2
k

)
P(Ck) , (9.1)

where p(x |Ck) is the likelihood of class k given observation x. 1

Log likelihoods and log probabilities When dealing with Gaussians, it is often useful to take
logs, and define LL(x |Ck) to denote ln p(x |Ck). We can write the log likelihood of the Gaussian pdf
ln p(x |µk, σ

2
k):

LL(x |µk, σ
2
k) = ln p(x |µk, σ

2
k)

= ln


1√

2πσ2
k

exp
(−(x − µk)2

2σ2
k

)

= − ln
(√

2πσ2
k

)
− (x − µk)2

2σ2
k

=
1
2

(
− ln(2π) − lnσ2

k −
(x − µk)2

σ2
k

)
. (9.2)

∗ c©2014-2020 University of Edinburgh. All rights reserved. This note is heavily based on notes inherited from Steve
Renals and Iain Murray.

1As was mentioned in Note 8, although p(x |Ck) is generally called the class-conditional density function of x, it should
be called the likelihood function of Ck when classification is concerned.

1

Note 9 Informatics 2B - Learning

We can use Bayes’ theorem to write log posterior probability LP(Ck | x):

LP(Ck | x) = LL(x |Ck) + LP(Ck) + const.

=
1
2

(
− ln(2π) − lnσ2

k −
(x − µk)2

σ2
k

)
+ ln P(Ck) + const. , (9.3)

where LP(Ck) is the log prior probability of class k, and ‘const.’ is the log of the constant of proportion-
ality, p(x), in Equation (9.1), Bayes’ theorem.

Log probability ratio If C1 and C2 are modelled by Gaussians with means µ1 and µ2, and variances
σ2

1 and σ2
2, then we can write the log odds (ratio of posterior probabilities) as follows:

ln
P(C1 | x)
P(C2 | x)

= ln P(C1 | x) − ln P(C2 | x) (9.4)

=
1
2

(
− ln(2π) − lnσ2

1 −
(x − µ1)2

σ2
1

)
− 1

2

(
− ln(2π) − lnσ2

2 −
(x − µ2)2

σ2
2

)
+ (ln P(C1) − ln P(C2))

(9.5)

= −1
2

(
(x − µ1)2

σ2
1

− (x − µ2)2

σ2
2

+ lnσ2
1 − lnσ2

2

)
+ ln P(C1) − ln P(C2) . (9.6)

Look at the right hand side of Equation (9.6). The first two terms are the variance-weighted Euclidean
distances from the means, the second two terms are log variances (arising from the normalisation
terms) and the third two terms are the log prior probabilities. Think through why, intuitively, each of
these terms should affect which class you believe best explains an observation.

9.2 Example: Univariate Gaussian classifier

We return to our previous pattern recognition example in Note 8, a problem with two classes, S and T .
Some observations of scalar values are available for each class:

Class S : 10 8 10 10 11 11
Class T : 12 9 15 10 13 13

We assume that each class may be modelled by a Gaussian. The maximum likelihood estimators of the
mean and variance of each pdf are:

µ̂S = 10 σ̂2
S = 1

µ̂T = 12 σ̂2
T = 4

The following unlabelled data points are available:

x1 =10 x2 =11 x3 =6

To which class should each of the data points be assigned? Assume the two classes have equal prior
probabilities.

2

Note 9 Informatics 2B - Learning

Since this is a two class problem, it is convenient to calculate the log posterior probability ratios for
each case. (In a multiclass problem, we would calculate the log posterior probability for each class.)

ln
P(S | X = x)
P(T | X = x)

= −1
2

(
(x − µS)2

σ2
S

− (x − µT)2

σ2
T

+ lnσ2
S − lnσ2

T

)
+ ln P(S) − ln P(T)

= −1
2

(
(x − µS)2

σ2
S

− (x − µT)2

σ2
T

+ lnσ2
S − lnσ2

T

)

= −1
2

(
(x − 10)2 − (x − 12)2

4
− ln 4

)
.

If the log ratio is less than 0, then assign to class T , otherwise assign to class S .

• x1 = 10:

ln
P(S | X = x1)
P(T | X = x1)

= −1
2

(
(x1 − 10)2 − (x1 − 12)2

4
− ln 4

)

= −1
2

(0 − 1 − ln 4)

≈ 1.19

• x2 = 11:

ln
P(S | X = x2)
P(T | X = x2)

= −1
2

(
(x2 − 10)2 − (x2 − 12)2

4
− ln 4

)

= −1
2

(1 − 0.25 − ln 4)

≈ 0.32

• x3 = 6:

ln
P(S | X = x3)
P(T | X = x3)

= −1
2

(
(x3 − 10)2 − (x3 − 12)2

4
− ln 4

)

= −1
2

(16 − 9 − ln 4)

≈ −2.81

We assign x1 to S ; x2 to S ; x3 to T .

Now assume that the two classes do not have equal prior probabilities, in fact P(S)=0.3, P(T)=0.7.
Including this prior information, to which class should each of the above test data points {x1, x2, x3} be
assigned?

Again compute the log posterior probability ratios:

ln
P(S | X = x)
P(T | X = x)

= −1
2

(
(x − µS)2

σ2
S

− (x − µT)2

σ2
T

+ lnσ2
S − lnσ2

T

)
+ ln P(S) − ln P(T)

= −1
2

(
(x − 10)2 − (x − 12)2

4
− ln 4

)
+ ln P(S) − ln P(T)

= −1
2

(
(x − 10)2 − (x − 12)2

4
− ln 4

)
+ ln(3/7) .

Reclassifying use the prior probability information:

3

Note 9 Informatics 2B - Learning

• x1 = 10:

ln
P(S | X = x1)
P(T | X = x1)

= −1
2

(
(x1 − 10)2 − (x1 − 12)2

4
− ln 4

)
+ ln(3/7)

= −1
2

(0 − 1 − ln 4) + ln(3/7)

≈ 0.34

• x2 = 11:

ln
P(S | X = x2)
P(T | X = x2)

= −1
2

(
(x2 − 10)2 − (x2 − 12)2

4
− ln 4

)
+ ln(3/7)

= −1
2

(1 − 0.25 − ln 4) + ln(3/7)

≈ −0.53

• x3 = 6:

ln
P(S | X = x3)
P(T | X = x3)

= −1
2

(
(x3 − 10)2 − (x3 − 12)2

4
− ln 4

)
+ ln(3/7)

= −1
2

(16 − 9 − ln 4) + ln(3/7)

≈ −3.66

We now assign x1 to S ; x2 to T ; x3 to T .

9.3 Multivariate Gaussian classifier

Now consider D-dimensional data x from class C modelled using a multivariate Gaussian:

p(x |C) = p(x |µ,Σ) = N(x;µ,Σ)

=
1

(2π)D/2|Σ|1/2 exp
(
−1

2
(x − µ)TΣ−1(x − µ)

)
. (9.7)

The log likelihood is:

LL(x |µ,Σ) = ln p(x |µ,Σ) = −D
2

ln(2π) − 1
2

ln |Σ| − 1
2

(x − µ)TΣ−1(x − µ) . (9.8)

And we can write the log posterior probability:

ln P(C |x) = −1
2

(x − µ)TΣ−1(x − µ) − 1
2

ln |Σ| + ln P(C) + constant . (9.9)

9.4 Example: Multivariate Gaussian Classifier

Consider the following problem. We have two-dimensional data from three classes (A, B, C). The
classes may be assumed to have equal prior probabilities. Our training data is in files trainA.dat,
trainB.dat, and trainC.dat, with test data in files testA.dat, testB.dat,and testC.dat.

4

Note 9 Informatics 2B - Learning

−8 −6 −4 −2 0 2 4 6
−8

−6

−4

−2

0

2

4

Figure 9.1: Training data from three classes: A (red circles), B (blue crosses) and C (cyan stars)

These files can be downloaded as http://www.inf.ed.ac.uk/teaching/courses/inf2b/labs/
MGC.zip.

There are 200 points from each class for training, and a further 100 points from each class for testing.
The data was generated from Gaussian distributions with the following parameters:

µA =

(−2
−2

)
, ΣA =

(
2 0
0 2

)
,

µB =

(
0
0

)
, ΣB =

(
1 0
0 1

)
,

µC =

(
2
−3

)
, ΣC =

(
4.0 1.0
1.0 1.5

)
.

We can load it into Matlab as follows, then plot the three classes on the same scatter plot (Figure 9.1).

% load training and test data

xa = load(’trainA.dat’);

xb = load(’trainB.dat’);

xc = load(’trainC.dat’);

testa = load(’testA.dat’);

testb = load(’testB.dat’);

testc = load(’testC.dat’);

alltest = [testa; testb; testc];

% plot the training data

figure;

hold on;

scatter(xa(:, 1), xa(:,2), ’r’, ’o’);

5

Note 9 Informatics 2B - Learning

scatter(xb(:, 1), xb(:,2), ’b’, ’x’);

scatter(xc(:, 1), xc(:,2), ’c’, ’*’);

Each row of the matrices xa, xb, etc. corresponds to a 2-dimensional training data point. To model
each class with a Gaussian density, we can immediately estimate the mean and covariance parameters
with the sample mean and covariance (computed using the built-in Matlab functions mean and cov):

% train the gaussians

mua = mean(xa);

mub = mean(xb);

muc = mean(xc);

covara = cov(xa);

covarb = cov(xb);

covarc = cov(xc);

If there are n data points then cov(x) computes the covariance normalising by 1/(n − 1); cov(x,1)
normalises by 1/n.

The resulting estimates for the mean and covariance of each class are as follows:

µ̂A =

(−2.1
−2.1

)
, Σ̂A =

(
2.0 −0.1
−0.1 1.6

)
,

µ̂B =

(
0.1
0.1

)
, Σ̂B =

(
1.0 0.0
0.0 0.9

)
,

µ̂C =

(
2.1
−2.9

)
, Σ̂C =

(
4.0 0.8
0.8 1.4

)
.

Compare these with the true values above.

We can plot the resulting Gaussians as contour plots over the training data points (Figure 9.2).

Figure 9.3 shows the testing points, labelled with their true classes, together with the Gaussians
estimated from the training data.

We can now go ahead and classify each testing point. For test points in class A, we can do the
following:

testaOut = [gauss(mua,covara,testa) gauss(mub,covarb,testa)

gauss(muc, covarc, testa)];

[maxaOut, classa] = max(testaOut,[],2);

The first line applies each of the three Gaussians to all the test points; the second line determines which
class has the highest probability. We can do this for each set of training data. Figures 9.4, 9.5, and 9.6
shows how the test data from each class was classified.

We can look at the results using a confusion matrix. The column of a confusion matrix correspond to
the predicted classes (i.e., classifier outputs). The rows correspond to the actual (true) class labels. The
number at position (r, c) is the number of patterns from true class r that were classified as class c. The
number of correctly classified patterns is obtained by summing the numbers on the leading diagonal:

Predicted class
Test Data A B C

Actual A 77 15 8
class B 5 88 7

C 9 2 89

6

Note 9 Informatics 2B - Learning

−8 −6 −4 −2 0 2 4 6
−8

−6

−4

−2

0

2

4

Figure 9.2: Gaussian distributions estimated from training data for each class

−8 −6 −4 −2 0 2 4 6
−8

−6

−4

−2

0

2

4

Figure 9.3: Test points, with true class labels, and distributions estimated from training data.

7

Note 9 Informatics 2B - Learning

−8 −6 −4 −2 0 2 4 6
−8

−6

−4

−2

0

2

4

Figure 9.4: Classification of test points from class A

−8 −6 −4 −2 0 2 4 6
−8

−6

−4

−2

0

2

4

Figure 9.5: Classification of test points from class B

8

Note 9 Informatics 2B - Learning

−8 −6 −4 −2 0 2 4 6
−8

−6

−4

−2

0

2

4

Figure 9.6: Classification of test points from class C

From the confusion matrix we can see that the overall proportion of test patterns correctly classified is
(77 + 88 + 89)/300 = 254/300 ≈ 0.85.

9.5 Application case study

We discuss the use of a multidimensional Gaussian classifier applied in a medical task. The details are
as follows:

Task Predict recovery of patients entering hospital with severe head injuries.

Input features 6 categorical variables recorded for each patient: Age, plus 5 responses to stimulation
(eye, motor, verbal), graded on scales (e.g., limb movement graded from 1 (nil) to 7 (normal)).

Output classes Three output classes: 1 (death); 2 (severe disability); 3 (good recovery).

Data set 500 patients in both the training and test sets.

Imbalanced classes 50% class 1, 10% class 2, 40% class 3.

Missing data Some feature values in some patterns were missing.

(D. M. Titterington et al. (1981), “Comparison of discrimination techniques applied to a complex data
set of head-injured patients”, J Roy Stat Soc Ser A, 144(2), 145–175.)

This problem was tackled by modelling each class using a multivariate Gaussian. Training thus
consisted of estimating the mean, covariance matrix and prior probability for each class. The mean
vector and covariance matrix for each class was estimated using maximum likelihood (i.e., estimated
using sample mean and sample covariance). The prior probabilities were estimated as the relative
frequency for each class.

9

Note 9 Informatics 2B - Learning

The missing values in the training set filled in with the class mean; since the class is unknown in the
test set, the missing values in the test set were filled in with the overall mean.

At test time, each test data point was assigned to the class with the highest posterior probability.

First it is useful to see how well the system performs when tested on the training data. This is the
confusion matrix that was obtained:

Predicted class
Training Data 1 2 3
Actual 1 209 0 50

class 2 22 1 29
3 15 1 173

Overall 76.6% ((209 + 1 + 173)/500 = 383/500) of the training patterns were correctly classified.

The following confusion matrix was obtained on the test data:

Predicted class
Test Data 1 2 3
Actual 1 188 0 59

class 2 19 1 28
3 29 2 171

Overall 72.0% ((188 + 1 + 171)/500 = 360/500) of the test patterns were correctly classified.

There are various points which may be noted from this experiment:

• The classification accuracy on the training set was better than the test set, but only a relative
improvement of about 6.4%.

• Class two, which corresponded to only 10% of the training set, was rarely selected by the system.

• The baseline strategy, which could be obtained by choosing the class with the highest prior
probability (class 1) for each example (i.e., ignoring the data) would achieve about 50% correct.

• The main confusion concerned items from class 1 being misclassified as class 3 (about 10% of
all the data in both training and test sets).

10

Note 9 Informatics 2B - Learning

Exercises

1. For the example in Section 9.2, considering a test sample x4 = 7 and assuming equal prior
probabilities, calculate P(S |X = x4) and P(T |X = x4).

2. For the example in Section 9.4, Sketch the true Gaussian distributions (rather than those esti-
mated) by hand for class A, B, and C. After you drew the graphs, try plotting the distributions
with a software tool.

3. For the example in Section 9.4, calculate the likelihood of a sample x = (0,−2)T for each class,
A,B, and C, assuming that you know the true parameters of the Gaussian distributions. (you may
use a calculator, but refrain from using a software tool first.)

11

