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Text classification is the task of classifying documents by their content: that is, by the words of which
they are comprised. Perhaps the best-known current text classification problem is email spam filtering:
classifying email messages into spam and non-spam (ham).

7.1 Document models

Text classifiers often don’t use any kind of deep representation about language: often a document is
represented as a bag of words. (A bag is like a set that allows repeating elements.) This is an extremely
simple representation: it only knows which words are included in the document (and how many times
each word occurs), and throws away the word order!

Consider a documentD, whose class is given by C. In the case of email spam filtering there are two
classes C = S (spam) and C = H (ham). We classify D as the class which has the highest posterior
probability P(C |D), which can be re-expressed using Bayes’ Theorem:

P(C |D) =
P(D|C) P(C)

P(D)
∝ P(D|C) P(C) . (7.1)

We shall look at two probabilistic models of documents, both of which represent documents as a bag
of words, using the Naive Bayes assumption. Both models represent documents using feature vectors
whose components correspond to word types. If we have a vocabulary V , containing |V | word types,
then the feature vector dimension D= |V |.

Bernoulli document model: a document is represented by a feature vector with binary elements
taking value 1 if the corresponding word is present in the document and 0 if the word is not
present.

Multinomial document model: a document is represented by a feature vector with integer elements
whose value is the frequency of that word in the document.

Example: Consider the vocabulary:

V = {blue, red, dog, cat, biscuit, apple} .

In this case |V |= D = 6. Now consider the (short) document “the blue dog ate a blue biscuit”. If dB

is the Bernoulli feature vector for this document, and dM is the multinomial feature vector, then we
∗ c©2014-2020 University of Edinburgh. All rights reserved. This note is heavily based on notes inherited from Steve

Renals and Iain Murray.
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would have:

dB = (1, 0, 1, 0, 1, 0)T

dM = (2, 0, 1, 0, 1, 0)T

To classify a document we use Equation (7.1), which requires estimating the likelihoods of the
document given the class, P(D|C) and the class prior probabilities P(C). To estimate the likelihood,
P(D|C), we use the Naive Bayes assumption applied to whichever of the two document models we
are using.

7.2 The Bernoulli document model

As mentioned above, in the Bernoulli model a document is represented by a binary vector, which
represents a point in the space of words. If we have a vocabulary V containing a set of |V | words, then
the t’th element of a document vector corresponds to word wt in the vocabulary. Let b be the feature
vector for the document D ; then the t’th element of b, written bt, is either 0 or 1 representing the
absence or presence of word wt in the document.

Let P(wt |Ck) be the probability of word wt occurring in a document of class k; the probability of wt not
occurring in a document of this class is given by (1−P(wt |Ck)). If we make the naive Bayes assumption,
that the probability of each word occurring in the document is independent of the occurrences of the
other words, then we can write the document likelihood P(D | C) in terms of the individual word
likelihoods P(wt |Ck):

P(D|Ck) = P(b |Ck) =

|V |∏

t=1

[bt P(wt |Ck) + (1−bt) (1−P(wt |Ck))] . (7.2)

This product goes over all words in the vocabulary. If word wt is present, then bt = 1 and the
required probability is P(wt |Ck); if word wt is not present, then bt = 0 and the required probability
is 1 − P(wt |Ck). We can imagine this as a model for generating document feature vectors of class k,
in which the document feature vector is modelled as a collection of |V | weighted coin tosses, the t th
having a probability of success equal to P(wt |Ck).

The parameters of the likelihoods are the probabilities of each word given the document class P(wt |Ck);
the model is also parameterised by the prior probabilities, P(Ck). We can learn (estimate) these
parameters from a training set of documents labelled with class k. Let nk(wt) be the number of
documents of class k in which wt is observed; and let Nk be the total number of documents of that class.
Then we can estimate the parameters of the word likelihoods as:1

P̂(wt | Ck) =
nk(wt)

Nk
, (7.3)

the relative frequency of documents of class k that contain word wt. If there are N documents in total
in the training set, then the prior probability of class k may be estimated as the relative frequency of
documents of class k:

P̂(Ck) =
Nk

N
. (7.4)

Thus given a training set of documents (each labelled with a class), and a set of K classes, we can
estimate a Bernoulli text classification model as follows:

1We sometimes use P̂( ) to explicitly denote the estimated probability as opposed to the (theoretical) true one, P( ).
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1. Define the vocabulary V; the number of words in the vocabulary defines the dimension of the
feature vectors

2. Count the following in the training set:

• N the total number of documents

• Nk the number of documents labelled with class k, for k=1, . . . ,K

• nk(wt) the number of documents of class k containing word wt for k=1, . . . ,K, t=1, . . . , |V |

3. Estimate the likelihoods P(wt | Ck) using Equation (7.3)

4. Estimate the priors P(Ck) using Equation (7.4)

To classify an unlabelled documentD, we estimate the posterior probability for each class k combining
Equation (7.1) and Equation (7.2):

P(Ck |b) ∝ P(b |Ck) P(Ck)

∝ P(Ck)
|V |∏

t=1

[bt P(wt |Ck) + (1−bt) (1−P(wt |Ck))] . (7.5)

Example

Consider a set of documents, each of which is related either to Sports (S ) or to Informatics (I). Given
a training set of 11 documents, we would like to estimate a Naive Bayes classifier, using the Bernoulli
document model, to classify unlabelled documents as S or I.

We define a vocabulary of eight words:

V =



w1 = goal,
w2 = tutor,

w3 = variance,
w4 = speed,
w5 = drink,

w6 = defence,
w7 = performance,

w8 = field



Thus each document is represented as an 8-dimensional binary vector.

The training data is presented below as a matrix for each class, in which each row represents an
8-dimensional document vector

BSport =



1 0 0 0 1 1 1 1
0 0 1 0 1 1 0 0
0 1 0 1 0 1 1 0
1 0 0 1 0 1 0 1
1 0 0 0 1 0 1 1
0 0 1 1 0 0 1 1


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BInf =



0 1 1 0 0 0 1 0
1 1 0 1 0 0 1 1
0 1 1 0 0 1 0 0
0 0 0 0 0 0 0 0
0 0 1 0 1 0 1 0



Classify the following into Sports or Informatics using a Naive Bayes classifier.

1. b1 = (1, 0, 0, 1, 1, 1, 0, 1)T

2. b2 = (0, 1, 1, 0, 1, 0, 1, 0)T

Solution:

The total number of documents in the training set N =11; NS =6, NI =5.

Using Equation (7.4), we can estimate the prior probabilities from the training data as:

P̂(S ) =
6

11
; P̂(I) =

5
11

The document count nk(w) in the training data set, and estimated word likelihoods using Equation (7.3)
are given as:

nS (w) P̂(w |S ) nI(w) P̂(w | I)

w1 3 3/6 1 1/5
w2 1 1/6 3 4/5
w3 2 2/6 3 3/5
w4 3 3/6 1 1/5
w5 3 3/6 1 1/5
w6 4 4/6 1 2/5
w7 4 4/6 3 3/5
w8 4 4/6 1 1/5

We use Equation (7.5) to compute the posterior probabilities of the two test vectors and hence classify
them.

1. b1 = (1, 0, 0, 1, 1, 1, 0, 1)T

P̂(S |b1) ∝ P̂(S )
8∏

t=1

[
b1tP̂(wt |S ) + (1 − b1t)(1 − P̂(wt |S ))

]

∝ 6
11

(
1
2
× 5

6
× 2

3
× 1

2
× 1

2
× 2

3
× 1

3
× 2

3

)
=

5
891

≈ 5.6 × 10−3

P̂(I |b1) ∝ P̂(I)
8∏

t=1

[
b1tP̂(wt | I) + (1 − b1t)(1 − P̂(wt | I))

]

∝ 5
11

(
1
5
× 2

5
× 2

5
× 1

5
× 1

5
× 1

5
× 2

5
× 1

5

)
=

8
859375

≈ 9.3 × 10−6

Classify this document as S .
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2. b2 = (0, 1, 1, 0, 1, 0, 1, 0)T

P̂(S |b2) ∝ P̂(S )
8∏

t=1

[
b2tP̂(wt |S ) + (1 − b2t)(1 − P̂(wt |S ))

]

∝ 6
11

(
1
2
× 1

6
× 1

3
× 1

2
× 1

2
× 1

3
× 2

3
× 1

3

)
=

12
42768

≈ 2.8 × 10−4

P̂(I |b1) ∝ P̂(I)
8∏

t=1

[
b1tP̂(wt | I) + (1 − b1t)(1 − P̂(wt | I))

]

∝ 5
11

(
4
5
× 3

5
× 3

5
× 4

5
× 1

5
× 4

5
× 3

5
× 4

5

)
=

34560
4296875

≈ 8.0 × 10−3

Classify as I.

7.3 The multinomial distribution (NE)

Before discussing the multinomial document model, it is important to be familiar with the multinomial
distribution.

We first need to be able to count the number of distinct arrangements of a set of items, when some of
the items are indistinguishable. For example: Using all the letters, how many distinct sequences can
you make from the word ‘Mississippi’? There are 11 letters to permute, but ‘i’ and ‘s’ occur four times
and ‘p’ twice. If these letters were distinct (e.g., if they were labelled i1, i2, etc.) then there would be
11! permutations. However of these permutations there are 4! that are the same if the subscripts are
removed from the ‘i’ s. This means that we can reduce the size of the total sample space by a factor of
4! to take account of the four occurrences of ‘i’. Likewise there is a factor of 4! for ‘s’ and a factor of
2! for ‘p’ (and a factor of 1! for ‘m’). This gives the total number distinct permutations as:

11!
4! 4! 2! 1!

= 34650

Generally if we have n items of D types, with n1 of type 1, n2 of type 2 and nD of type D (such that
n1 + n2 + . . . + nD = n), then the number of distinct permutations is given by:

n!
n1! n2! . . . nD!

These numbers are called the multinomial coefficients.

Now suppose a population contains items of D ≥ 2 different types and that the proportion of items that
are of type t is pt (t=1, . . . ,D), with

D∑

t=1

pt = 1 pt > 0, for all t.

Suppose n items are drawn at random (with replacement) and let xt denote the number of items of
type t. The vector x= (x1, . . . , xD)T has a multinomial distribution with parameters n and p1, . . . , pD,
defined by:

P(x) =
n!

x1! x2! . . . xD!
px1

1 px2
2 . . . p

xD
D

=
n!

∏D
t=1 xt!

D∏

t=1

pxt
t . (7.6)
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The
∏D

t=1 pxt
t product gives the probability of one sequence of outcomes with counts x. The multinomial

coefficient, counts the number of such sequences that there are.

7.4 The multinomial document model

In the multinomial document model, the document feature vectors capture the frequency of words, not
just their presence or absence. Let x be the multinomial model feature vector for documentD. The
t’th element of x, written xt, is the count of the number of times word wt occurs in documentD. Let
n=

∑
t xt be the total number of words in documentD.

Let P(wt |Ck) again be the probability of word wt occurring in class k, this time estimated using the word
frequency information from the document feature vectors. We again make the naive Bayes assumption,
that the probability of each word occurring in the document is independent of the occurrences of
the other words. We can then write the document likelihood P(D|Ck) as a multinomial distribution
(Equation (7.6)), where the number of draws corresponds to the length of the document, and the
proportion of drawing item t is the probability of word type t occurring in a document of class k,
P(wt |Ck).

P(D|C) = P(x |Ck) =
n!

∏|V |
t=1 xt!

|V |∏

t=1

P(wt |Ck)xt

∝
|V |∏

t=1

P(wt |Ck)xt . (7.7)

We often won’t need the normalisation term (n!/
∏

t xt!), because it does not depend on the class k.
The numerator of the right hand side of this expression can be interpreted as the product of word
likelihoods for each word in the document, with repeated words taking part for each repetition.

As for the multinomial model, the parameters of the likelihood are the probabilities of each word given
the document class P(wt |Ck), and the model parameters also include the prior probabilities P(Ck). To
estimate these parameters from a training set of documents, {D1,D2, . . . ,DN}, let zik be an indicator
variable which equals 1 when Di belongs to class k, and equals 0 otherwise. If N is again the total
number of documents, then we have:

P̂(wt | Ck) =

∑N
i=1 xit zik∑|V |

s=1

∑N
i=1 xis zik

(7.8)

=
nk(wt)∑|V |

s=1 nk(ws)
, (7.9)

an estimate of the probability P(wt | Ck) as the relative frequency of wt in documents of class k with
respect to the total number of words in documents of that class, where nk(wt) =

∑N
i=1 xit zik.2

The prior probability of class k is estimated as before (Equation (7.4).

Thus given a training set of documents (each labelled with a class) and a set of K classes, we can
estimate a multinomial text classification model as follows:

2We previously used the same variable nk(wt) in Equation (7.3) for Bernoulli model to denote the number of documents
of class k containing word wt, whereas it now represents the frequency of word wt in the documents of class k. You should
now understand Equation (7.9) is more general than Equation (7.3). The actual difference lies in the fact that the two
document models employ different types of feature vector - Bernoulli feature vector and multinomial feature vector.
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1. Define the vocabulary V; the number of words in the vocabulary defines the dimension of the
feature vectors.

2. Count the following in the training set:

• N : the total number of documents

• Nk : the number of documents labelled with class k, for each class k=1, . . . ,K

• xit : the frequency of word wt in documentDi, computed for every word wt in V
(Alternatively, nk(wt) : the frequency of word wt in the documents of class k)

3. Estimate the likelihoods P(wt | Ck) using Equation (7.8) or Equation (7.9).

4. Estimate the priors P(Ck) using Equation (7.4).

To classify an unlabelled documentD, we estimate the posterior probability for each class combining
(Equation (7.1) and (Equation (7.7)):

P(Ck |D) = P(Ck |x)
∝ P(x |Ck) P(Ck)

∝ P(Ck)
|V |∏

t=1

P(wt |Ck)xt . (7.10)

Unlike the Bernoulli model, words that do not occur in the document (i.e., for which xt = 0) do not
affect the probability (since p0 =1).

Note that we can rewrite the posterior probability in terms of words u which occur in the document:

P(Ck |D) ∝ P(Ck)
len(D)∏

j=1

P(u j |Ck) (7.11)

where u j is the j ’th word in document D. This form will be preferable to the original one in some
applications, which you will see in the following example.

Example

Consider the same example in Section 7.2, except that this time we will use the multinomial model
instead of Bernoulli model.

Each documentDi is now represented as an 8-dimensional row vector mi ; element mit is the frequency
of word wt in documentDi.

The training data is presented below as a matrix for each class, in which each row represents an
8-dimensional document vector.

MSport =



2 0 0 0 1 2 3 1
0 0 1 0 2 1 0 0
0 1 0 1 0 2 1 0
1 0 0 2 0 1 0 1
2 0 0 0 1 0 1 3
0 0 1 2 0 0 2 1


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MInf =



0 1 1 0 0 0 1 0
1 2 0 1 0 0 1 1
0 1 1 0 0 2 0 0
0 0 0 0 0 0 0 0
0 0 1 0 1 0 1 0



Classify the following test documents into Sports or Informatics.

1. D1 = w5 w1 w6 w8 w1 w2 w6

2. D2 = w3 w5 w2 w7

Solution:

Let nk(w) be the frequency of word w in all documents of class k, giving likelihood estimate,

P̂(w |S ) =
nS (w)∑
v∈V nS (v)

, P̂(w | I) =
nI(w)∑
v∈V nI(v)

,

nS (w) P̂(w |S ) nI(w) P̂(w | I)

w1 5 5/36 1 1/16
w2 1 1/36 4 4/16
w3 2 2/36 3 3/16
w4 5 5/36 1 1/16
w5 4 4/36 1 1/16
w6 6 6/36 2 2/16
w7 7 7/36 3 3/16
w8 6 6/36 1 1/16

We have now estimated the model parameters.

1. D1 = w5 w1 w6 w8 w1 w2 w6

P̂(D1 |S ) = P̂(w5 |S ) · P̂(w1 |S ) · P̂(w6 |S ) · P̂(w8 |S ) · P̂(w1 |S ) · P̂(w2 |S ) · P̂(w6 |S )

=
4

36
× 5

36
× 6

36
× 6

36
× 5

36
× 1

36
× 6

36
=

4 × 52 × 63

367 ≈ 2.76 × 10−7

P̂(S |D1) ∝ P̂(S ) P̂(D1 |S ) =
6

11
· 4 × 52 × 63

367 ≈ 1.50 × 10−7

P̂(D1 | I) = P̂(w5 | I) · P̂(w1 | I) · P̂(w6 | I) · P̂(w8 | I) · P̂(w1 | I) · P̂(w2 | I) · P̂(w6 | I)

=
1

16
× 1

16
× 2

16
× 1

16
× 1

16
× 4

16
× 2

16
=

24

167 ≈ 5.96 × 10−7

P̂(I |D1) ∝ P̂(I) P̂(D1 | I) =
5

11
· 24

166 ≈ 2.71 × 10−8

P̂(S |D1) > P̂(I |D1), thus we classifyD1 as S .
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We have not normalised by P̂(D1), hence the above are joint probabilities, proportional to the
posterior probability. To obtain the posterior:

P̂(S |D1) =
P̂(S ) P̂(D1 |S )

P̂(S ) P̂(D1 |S ) + P̂(I) P̂(D1 | I)
=

1.50 × 10−7

1.50 × 10−7 + 2.71 × 10−8 ≈ 0.847

P̂(I |D1) = 1 − P̂(S |D1) ≈ 0.153

2. D2 = w3 w5 w2 w7

P̂(D2 |S ) = P̂(w3 |S ) · P̂(w5 |S ) · P̂(w2 |S ) · P̂(w7 |S )

=
2

36
× 4

36
× 1

36
× 7

36
=

23 × 7
364 ≈ 3.33 × 10−5

P̂(S |D2) ∝ P̂(S ) P̂(D2 |S ) =
6

11
· 23 · 7

364 ≈ 1.82 × 10−5

P̂(D2 | I) = P̂(w3 | I) · P̂(w5 | I) · P̂(w2 | I) · P̂(w7 | I)

=
3

16
× 1

16
× 4

16
× 3

16
=

32 · 4
164 ≈ 5.49 × 10−4

P̂(I |D2) ∝ P̂(I) P̂(D2 | I) =
5
11
· 32 · 4

164 ≈ 2.50 × 10−4

P̂(I |D2) > P̂(S |D2), thus we classifyD2 as I.

We have not normalised by P̂(D2), hence the above are joint probabilities, proportional to the
posterior probability. To obtain the posterior:

P̂(S |D2) =
P̂(S ) P̂(D2 |S )

P̂(S ) P̂(D2 |S ) + P̂(I) P̂(D2 | I)
=

1.82 × 10−5

1.82 × 10−5 + 2.50 × 10−4 ≈ 0.0679

P̂(I |D2) = 1 − P̂(S |D2) ≈ 0.932

7.5 The Zero Probability Problem

A drawback of relative frequency estimates—Equation (7.8) for the multinomial model—is that zero
counts result in estimates of zero probability. This is a bad thing because the Naive Bayes equation for
the likelihood (Equation (7.7)) involves taking a product of probabilities: if any one of the terms of
the product is zero, then the whole product is zero. This means that the probability of the document
belonging to the class in question is zero—which means it is impossible.

Just because a word does not occur in a document class in the training data does not mean that it cannot
occur in any document of that class.

The problem is that Equation (7.8) underestimates the likelihoods of words that do not occur in the
data. Even if word w is not observed for class k in the training set, we would still like P(w | Ck) > 0.
Since probabilities must sum to 1, if unobserved words have underestimated probabilities, then those
words that are observed must have overestimated probabilities. Therefore, one way to alleviate the
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problem is to remove a small amount of probability allocated to observed events and distribute this
across the unobserved events. A simple way to do this, sometimes called Laplace’s law of succession
or add-one smoothing, adds a count of one to each word type. If there are W word types in total, then
Equation (7.8) may be replaced with:

PLap(wt | Ck) =
1 +

∑N
i=1 xit zik

|V | + ∑|V |
s=1

∑N
i=1 xis zik

=
1 + nk(wt)

|V | + ∑|V |
s=1 nk(ws)

(7.12)

The denominator was increased to take account of the |V | extra ‘observations’ arising from the ‘add 1’
term, ensuring that the probabilities are still normalised.

7.6 Comparing the two models

The Bernoulli and the multinomial document models are both based on a bag of words. However there
are a number of differences, which we summarise here:

1. Underlying model of text:
Bernoulli: a document can be thought of as being generated from a multidimensional Bernoulli
distribution: the probability of a word being present can be thought of as a (weighted) coin flip
with probability P(wt |C).
Multinomial: a document is formed by drawing words from a multinomial distribution: you can
think of obtaining the next word in the document by rolling a (weighted) |V |-sided dice with
probabilities P(wt |C).

2. Document representation:
Bernoulli: binary vector, elements indicating presence or absence of a word.
Multinomial: integer vector, elements indicating frequency of occurrence of a word.

3. Multiple occurrences of words:
Bernoulli: ignored.
Multinomial: taken into account.

4. Behaviour with document length:
Bernoulli: best for short documents.
Multinomial: longer documents are OK.

5. Behaviour with ‘the’:
Bernoulli: since ‘the’ is present in almost every document, P(‘the’ |C) ≈ 1.0.
Multinomial: since probabilities are based on relative frequencies of word occurrence in a class,
P(‘the’ |C) ≈ 0.05.

7.7 Conclusion

In this chapter we have shown how the Naive Bayes approximation can be used for document
classification, by constructing distributions over words. The classifiers require a document model to
estimate P(document | class). We looked at two document models that we can use with the Naive
Bayes approximation:

• Bernoulli document model: a document is represented by a binary feature vector, whose
elements indicate absence or presence of corresponding word in the document.

10
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• Multinomial document model: a document is represented by an integer feature vector, whose
elements indicate frequency of corresponding word in the document.

Reference: Christopher D. Manning, Prabhakar Raghavan and Hinrich Schütze, Introduction to
Information Retrieval, Cambridge University Press. 2008. (Chapter 13 Text classification and Naive
Bayes) http://www-nlp.stanford.edu/IR-book/
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Exercises

1. Considering the same example in Section 7.4, classify a new test documentD = w7,w3,w2,w3,w4

when the multinomial document model is used. What if the Bernoulli document model is em-
ployed instead?

2. The Bernoulli document model can also suffer from the zero probability problem discussed in
Section 7.5. How would you apply add-one smoothing in this case?
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