
Note 1 Informatics 2B - Learning

Introduction

Hiroshi Shimodaira∗

January-March 2020

Prerequisites You should have taken Informatics 1; in particular Inf1 — Data and Analysis is
relevant to this thread. We use some Calculus, Linear Algebra, and Probability in this course, but we
will revise and refresh what is needed as we go along.

Books There is no required textbook, but some good books include:

• Simon Rogers and Mark Girolami, A First Course in Machine Learning, 2nd Ed., CRC, 2016.

• Tom Mitchell, Machine Learning, McGraw Hill, 1997.

• Stuart Russell and Peter Norvig, Artificial Intelligence: A Modern Approach, Prentice Hall,
2003.

Some more advanced books include:

• Ian H. Witten and Eibe Franke, Data Mining: Practical Machine Learning Tools and Techniques,
Morgan Kaufmann, 2005.

• Christopher M. Bishop, Pattern Recognition and Machine Learning, Springer, 2006.

• David J.C. MacKay, Information Theory, Inference, and Learning Algorithms, CUP, 2003.

• R Duda, P Hart and D Stork, Pattern Classification, 2nd Ed., Wiley, 2001.

• Kevein P. Murphy, Machine Learning, The MIT Press, 2012.

• T. Hastie, R. Tibshirani, J. Friedman, The Elements of Statistical Learning, 2nd Ed., Springer
2009. (http://statweb.stanford.edu/˜tibs/ElemStatLearn)

This book demonstrates some of the ideas we cover in this course, applied in a ‘Web 2.0’ setting:

• Toby Segaran, Programming Collective Intelligence, O’Reilly, 2007.

Online resources Wikipedia (http://en.wikipedia.org/) has good coverage of several of the
topics that we will cover.

∗ c©2014-2020 University of Edinburgh. All rights reserved. This note is heavily based on notes inherited from Steve
Renals and Iain Murray.

1

Note 1 Informatics 2B - Learning

1.1 Motivation

Given some data, what might we do with it? In the algorithms and data structures thread you will
learn about how to design and analyse algorithms and data structures to sort data and to search for
items in a data set, in a correct, efficient and simple manner. In this thread we are more concerned with
algorithms and models that can make predictions about new data items, given the data that has already
been observed. For example, we may want to:

• assign a new data item to its class (classification);

• predict the next item in a sequence (time series prediction);

• predict an output given a new input (regression).

Léon Bottou (http://leon.bottou.org/research/largescale) puts things in an interesting
way:

For the sake of the argument, assume that there are only two categories of computers. The
first category, the makers, directly mediate human activity. They implement the dialogue
between sellers and buyers, run the accounting department, control industrial processes,
route telecommunications, etc. The makers generate and collect huge quantities of data.
The second category, the thinkers, analyse this data, build models, and draw conclusions
that direct the activity of the makers.

In this thread we are concerned with the thinkers. Let’s look at some examples.

Handwritten digit recognition Figure 1.1a shows some examples of the digits 0–9, written by
people, then scanned and digitised. Each digit image is associated with one of the ten digit classes. If
an image of a new digit is observed, the task is to classify it correctly. To do this, we must decide on a
representation for the images, and learn a way of associating such a representation to a class. This is a
classification problem.

Load forecasting For the electricity industry, being able to predict the demand for power — as
far in advance as possible — is extremely important in order to schedule maintenance, buy fuel as
cheaply as possible, minimise overhead, and so on. A typical problem is to predict the hourly electricity
demand several days in advance. There are many factors to consider such as weather conditions, time
of day, day of the week, holidays, and so on. The problems to be addressed are how the factors are to
be represented, and given such a representation how to estimate the load. This is a regression problem.

Predicting currency exchange rates Given a history of currency exchange rates (the exchange
rate recorded each day, hour, minute, . . . ) how accurately can the next value in the time series be
predicted?

Recommender systems Given my shopping history, how can an online store recommend items to
me that I might want to buy?

Spam Filtering Filter out the unwanted spam mail messages, whilst not losing any of the non-spam
messages.

2



Note 1 Informatics 2B - Learning

(a) Set of digitised characters

(b) Digitised character ‘8’

Figure 1.1: Handwritten digits, captured by a camera and digitised. This data was collected and
distributed by Alex Seewald, http://alex.seewald.at/digits/

Speech recognition What is the sequence of words that corresponds to an acoustic signal?

Medical diagnosis Given a set of measurements relating to a patient, what condition should be
diagnosed?

Robot navigation Given a set of observations about the world, what actions should a robot take to
achieve a goal?

1.2 Data

In this thread we are interested in discovering patterns in data, and using those patterns to make
predictions or perform classifications. People are naturally good at exploiting patterns, Witten and
Frank give several examples: hunters seek patterns in animal migrations, farmers seek patterns in
crop growth, politicians look for patterns in the electorate, lovers look for patterns in their partners’
responses to them. Indeed, the process of science involves finding patterns in data, making predictions
based on those patterns, and verifying the predictions.

3

Note 1 Informatics 2B - Learning

Figure 1.2: Preprocessed digit image on an 8x8 grid

Data comes from many places:

• Sensors such as microphones, cameras, machine monitoring

• Social/economic records such as currency exchange rates, prices

• Artificially created such as possible parses of a sentence, possible object code generated by a
compiler

And it needs to be kept in a machine readable electronic form, but it can come in different forms:

• Numeric: numbers such as sound pressure levels obtained from a microphone

• Nominal: categories such as a red, blue and green; or the words in a language

• Ordinal: symbolic data that can be ranked such as grades from ’very easy’ to ’very difficult’

1.2.1 Example: Handwritten digits

As an example let’s look at how we might represent a handwritten digit, such as the digit 8 in Figure
1.1b. First, we need to extract an image of an individual digit, since the raw data is likely to be
sequences of characters (e.g., an address on an envelope, a handwritten cheque). This process, called
segmentation, is in itself non-trivial! Once the individual digit images are extracted they need to be
normalised, for example they need to be scaled to be the same size (imagine that each digit is scaled
to fit in a rectangle of a fixed size). These preprocessing operations result in a set of segmented and
normalised digit images (Figure 1.1a). We will assume that there exists an automatic process that can
perform the segmentation and normalisation operations.

Binary representation

Preprocessing removes quite a lot of the variability between images: the location and scale of the
images are now the same. Once the images are all fitted to similar sized boxes, the next task is to find
a way to represent them in away that is suitable for the process or machine that will associate digit
images with the 10 possible classes (0–9). One way to do this is to divide each box into a grid. Figure
1.2 shows the digit image from Figure 1.1b on an 8 × 8 grid. We could represent each cell in the grid
by a binary value: 0 if there is no ink in that location, 1 if there is. This would result in something like
the one shown in Figure 1.3 for the example image.

We now have a grid of numbers. How can we represent such a grid? One way is as a 64-bit (8× 8 = 64)
binary number:
0000011100001001000110100001110000111000111100001001100011110000
This has the advantage of being compact, but treating the bits as part of a single number means that

4



Note 1 Informatics 2B - Learning

0 0 0 0 0 1 1 1
0 0 0 0 1 0 0 1
0 0 0 1 1 0 1 0
0 0 0 1 1 1 0 0
0 0 1 1 1 0 0 0
1 1 1 1 0 0 0 0
1 0 0 1 1 0 0 0
1 1 1 1 0 0 0 0

Figure 1.3: Binary representation of the digit image with an 8x8 grid

some are more significant than others—changing the first bit has a bigger effect than changing the last
bit.

Another way is as a 8-by-8 matrix, e.g. B = (bi j), 1 ≤ i ≤ 8, 1 ≤ j ≤ 8, so that each element bi j

corresponds to the grid (i, j), i.e., the cell at i’th row and j’th column.

B =



0 0 0 0 0 1 1 1
0 0 0 0 1 0 0 1
0 0 0 1 1 0 1 0
0 0 0 1 1 1 0 0
0 0 1 1 1 0 0 0
1 1 1 1 0 0 0 0
1 0 0 1 1 0 0 0
1 1 1 1 0 0 0 0



Binary vector representation

Recognising digit images will always require a way of measuring the similarity between images
(we assume that images of the same digit class are in some way similar). Thus we would like a
representation that tells us that the above binary grid is similar to this one:

0 0 0 0 0 1 1 1
0 0 0 0 1 0 0 1
0 0 0 1 1 0 1 0
0 0 0 1 1 1 0 0
0 0 0 1 1 0 0 0
0 1 1 1 0 0 0 0
1 0 0 1 1 0 0 0
1 1 1 1 0 0 0 0

A natural way to do this is by converting the corresponding 8-by-8 matrix into a 64-element vector 1:
(0, 0, 0, 0, 0, 1, 1, 1, 0, 0, 0, 0, 1, 0, 0, 1, . . . , 0, 0, 0)T

Notation: (·)T means transpose, allowing us to write a column vector on a single line to save space.
Having the two images represented as vectors, a and b for example, we can now tell how they are
similar to each other by calculating the distance (e.g. Euclidean distance) between a and b.

1The conversion shown here was done in row-wise, i.e., the first row of the matrix was copied into the vector first,
followed by copying the second row, and so on. It could be done in column-wise, of course.

5

Note 1 Informatics 2B - Learning

Figure 1.4: Automatically generated recommendations from http://www.amazon.co.uk

You will have come across 2- and 3-dimensional vectors when you have studied vector geometry. The
concept can be extended to higher dimensions and the mathematics (scalar product, distance, and so
on) remains the same. We are representing the images in a high-dimensional space (64 dimensions in
this case), where each dimension corresponds to a pixel value.

Real-valued vectors

It was not completely accurate to write that we assigned the binary number to each grid location as ‘0
if there is no ink in that location, 1 if there is’. In fact what we did was to choose a threshold on how
much grey colour there was in each location. If a location was above threshold we assigned it value 1,
otherwise it was assigned 0.

An alternative to hard thresholding would be to set the value for each location to a real number,
between 0 and 1, such that 0 is completely white and 1 is completely black, with numbers in between
corresponding to the amount of grey. In this case our vector might look like:
(0.00, 0.00, 0.00, 0.00, 0.02, 0.55, 0.66, 0.78, 0.00, 0.00, 0.00, 0.01, 0.70, . . . , 0.00, 0.00, 0.00)T

This type of representation is used in many problems, and we will be dealing with such multidimen-
sional vector representations in a lot of this course. They are often referred to as feature vectors.

1.2.2 Example: Recommender Systems

You can get recommendations for things like films, games, music by asking your friends and by reading
reviews. And you know some of your friends have tastes similar to your own (and some of them don’t).
But what if there is a new film your friends haven’t seen yet? Or if none of your friends have quite
the same likes and dislikes as you? A recommender system (also called collaborative filtering) works
by looking at large groups of people and seeing which among them buy or rent or download similar
things to you. Such a system can then combines the lists of things that they like, to provide a list of
things that you might like.

6



Note 1 Informatics 2B - Learning

The film rental company Netflix uses recommender systems to suggest films you might like to watch.
They instituted the Netflix Prize (http://www.netflixprize.com) to improved the quality of
recommender systems. The description provided by Netflix gives a good idea of what recommender
systems do, and the framework in which they are constructed:

Netflix is all about connecting people to the movies they love. To help customers find those movies,
we’ve developed our world-class movie recommendation system: Cinematch. Its job is to predict
whether someone will enjoy a movie based on how much they liked or disliked other movies. We
use those predictions to make personal movie recommendations based on each customer’s unique
tastes. And while Cinematch is doing pretty well, it can always be made better.

Now there are a lot of interesting alternative approaches to how Cinematch works that we haven’t
tried. Some are described in the literature, some aren’t. We’re curious whether any of these can
beat Cinematch by making better predictions. Because, frankly, if there is a much better approach
it could make a big difference to our customers and our business.

So, we thought we’d make a contest out of finding the answer. It’s ‘easy’ really. We provide
you with a lot of anonymous rating data, and a prediction accuracy bar that is 10% better than
what Cinematch can do on the same training data set. (Accuracy is a measurement of how closely
predicted ratings of movies match subsequent actual ratings.)

(The bar was finally beaten in summer 2009, after 3 years of competition.)

What does the data used by a recommender system look like? You can think of it as a large matrix of
people (recommenders) vs. items (e.g. films). Each cell (i, j) of the matrix gives the value that person i
gives to item j. In the case of Netflix, this is a whole number from 1–5, representing the rating that
the person gave to the film (1-star to 5-stars); for a website recommender it might be 1 (liked), 0 (no
preference), -1 (didn’t like); for an online store it might be 2 (bought), 1 (browsed), 0 (didn’t buy).

In many cases this matrix is sparse: most people have not seen most films.

1.3 Learning

We are interested in learning from the data that we have observed, in order to make predictions about
new data points. But what do we mean by learning? Chambers’ dictionary defines the verb learn as
follows:

to be informed; to get to know; to gain knowledge, skill, or ability.

It is not obvious to see how this translates to the computational setting. What does it mean to inform a
computer? How can we determine or measure whether a computer has gained a skill? Rather than
worrying about such philosophical issues, we will use the following definition, based on that in Tom
Mitchell’s book:

Machine learning is the study of models and algorithms that improve automatically through
experience.

There are still some problems with this definition:

1. What do we mean by improve?

2. What is experience?

7

Note 1 Informatics 2B - Learning

For a system to improve then it must have some kind of purpose, for example classifying digit images
to the correct digit class. If the system improves, then it classifies more accurately. Putting it another
way, it makes fewer errors. In machine learning we need to be able to measure improvement in terms
of a mathematical function that may measure the error, or measure how well the system models the
data. The choice of this function, and the way the system is modified to improve the function, is the at
the core of machine learning.

By experience we mean the observed data. In the case of digit recognition, experience corresponds to
a set of images together with their correct classes. In the case of a film recommender system, it is a set
of ratings given to films by a large group of users.

1.4 Notation

The following is the default notation used in the course. Note that different versions may be used
sometimes for the ease of readability.

x A scalar
x A column vector : x = (x1, x2, . . . , xD)T , where D is the dimension of vector
xT Transpose of vector x, meaning a row vector if x is a column vector
xn or xd n’th sample (scalar), or d’th element of vector x∑N

n=1 xn Summation, i.e., x1 + x2 + . . . + xN∏N
n=1 xn Product, i.e., x1x2 · · · xN

xn n’th sample (vector): xn = (xn1, xn2, . . . , xnD)T

‖x‖ Euclidean norm or L2 norm: ‖x‖=
√∑D

d=1 x2
d=
√

xT x, also known as magnitude
‖x‖1 L1 norm, i.e.

∑D
d=1 |xd|

u · v dot (inner or scalar) product of u and v, i.e., u · v=‖u‖ ‖v‖ cos θ=uT v=ΣD
d=1udvd

A A matrix: A = (ai j). If A is a M-by-N matrix, A = (a1, . . . , aN)
Ai j Element of matrix A at i’th row and j’th column, i.e. ai j

I or Id Identity matrix of size d by d (ones on diagonal, zeros off)
AT Transpose of matrix A, i.e. AT = (a ji)
A−1 Inverse of matrix A, i.e. A−1A = AA−1 = I
|A| or det(A) Determinant of matrix A
tr(A) Trace of matrix A
{xn}N1 A set of samples: {x1, . . . , xN}
x̄ Sample mean of x
s2, s2

x, or Var (x) Sample variance of x
sxy Sample covariance of x and y. NB: sxx = s2

x
µ Population mean
σ2 Population variance
Σ Population covariance matrix (cf. summation operator

∑
)

σi j (i, j)-element of a covariance matrix, i.e. Σ = (σi j). NB: σii = σ
2
i

exp(x) The natural exponential function of x, i.e. ex

ln(x) The natural logarithm of x
δi j Kronecker delta, i.e. δi j=1 if i= j, 0 if i, j
x ∝ y x is proportional to y

8



Note 1 Informatics 2B - Learning

Exercises (linear algebra and calculus)

Try the following questions without using calculators.

1. Consider two column vectors such that a = (1, 2, 3)T and b = (−3, 3,−1)T .

(a) Find a + b.

(b) Find a − b.

(c) Find ‖a‖, ‖b‖, and ‖a − b‖.
(d) Find aT b.

(e) Find abT .

(f) What is the geometric relationship between a and b?

2. Let A =
(

1 2
3 4

)
and B =

(
4 −1
−2 3

)
.

(a) Find A − B.

(b) Find AB and AT BT .

(c) Find BA and BT AT .

(d) Find |A|, i.e. det(A).

(e) Find A−1.

3. Let A is a m-by-n matrix and B is a n-by-ℓ matrix, prove (AB)T = BT AT .

4. Let A, B,C are m-by-n, n-by-ℓ, and ℓ-by-k matrices, respectively. Rewrite (ABC)T in a form
without parentheses. What is the dimension of the resultant matrix?

5. Derive a formula for the Euclidean distance between the origin (0, 0) and a line y = ax + b,
where a and b are arbitrary constants.

6. Find the derivative of each of the following functions.

(a)
∑N

n=0 anxn, where an, n = 0, . . . ,N are constants

(b) ex3

(c) ecos(x)

(d) e−x2

x2

(e) 1
1+e−x

(f) xx

9

Note 2 Informatics 2B - Learning

Similarity and Recommender Systems

Hiroshi Shimodaira∗

January-March 2020

In this chapter we shall look at how to measure the similarity between items. To be precise we’ll look
at a measure of the dissimilarity or distance between feature vectors, as well as a direct measurement of
similarity. We shall then see how such measures can be used to suggest items in collaborative filtering
and recommender systems.

2.1 Distances

We often want to compare two feature vectors, to measure how different (or how similar) they are. We
hope that similar patterns will behave in a similar way. For example if we are performing handwriting
recognition, a low distance between digit feature vectors (derived from images) might indicate that
they should be given the same label. If we are building a recommender system for an online shop,
similar user feature vectors (derived from their purchasing or browsing histories) might indicate users
with similar tastes. The distance between two items depends on both the representation used by the
feature vectors and on the distance measure used.

If the feature vectors are binary (i.e., all elements are 0 or 1) then the Hamming distance is a possible
distance measure. For real valued vectors, the Euclidean distance is often used: this is familiar from 2-
or 3-dimensional geometry, and may also be generalised to higher dimensions.

2.1.1 Hamming distance

The Hamming distance between two binary sequences of equal length is the number of positions for
which the corresponding symbols are different. For example the Hamming Distance between 10101010
and 11101001 is 3.

2.1.2 Euclidean distance

The Euclidean distance is already familiar to you from 2- and 3-dimensional geometry. The Euclidean
distance r2(u, v) between two 2-dimensional vectors u = (u1, u2)T and v = (v1, v2)T is given by:

r2(u, v) =
√

(u1 − v1)2 + (u2 − v2)2 =

√√
2∑

k=1

(uk − vk)2 . (2.1)

∗ c©2014-2020 University of Edinburgh. All rights reserved. This note is heavily based on notes inherited from Steve
Renals and Iain Murray.

1



Note 2 Informatics 2B - Learning

(Superscript T symbolises the transpose operation so we can write a column vector easily within a line,
e.g.,

(
x
y

)
as (x, y)T .)

Generalising to higher dimensions, the Euclidean distance between two D-dimensional vectors u =(
u1, u2, u3, . . . , uD

)T and v =
(
v1, v2, v3, . . . , vD

)T is given by:

r2(u, v) =
√

(u1 − v1)2 + (u2 − v2)2 + · · · + (uD − vD)2 =

√√
D∑

d=1

(ud − vd)2 . (2.2)

It is often the case that we are not interested in the precise distances, just in a comparison between
distances. For example, we may be interested in finding the closest point (nearest neighbour) to a point
in a data set. In this case it is not necessary to take the square root.

Other distance measures are possible for example the Manhattan (or city-block) metric:

r1(u, v) = |u1 − v1| + |u2 − v2| + · · · + |uD − vD| =
D∑

d=1

|ud − vd| . (2.3)

The notation |a| indicates the absolute value of a. More generally it is possible to use other powers,
giving rise to a more general form (known as the p-norm or Lp-norm):

rp(u, v) =


D∑

d=1

|ud − vd|p


1/p

. (2.4)

We will be mostly concerned with the familiar Euclidean distance in this course.

2.2 A simple recommender system

Table 2.1 shows the ratings that a few well-known US film critics gave to a small group of movies. We
shall use this data to develop a simple recommender system. Unlike a realistic system, in this case
every person has rated every film.

We can represent this data as a matrix, whose rows correspond to a particular critic and whose columns
correspond to a film, and where the value of each element (c,m) is the score given by critic c to film
(movie) m: 

3 7 4 9 9 7
7 5 5 3 8 8
7 5 5 0 8 4
5 6 8 5 9 8
5 8 8 8 10 9
7 7 8 4 7 8



.

If we want a feature vector per critic then we can just take the rows:

x1 = (3, 7, 4, 9, 9, 7)T

x2 = (7, 5, 5, 3, 8, 8)T

...

x6 = (7, 7, 8, 4, 7, 8)T ,

where x1 corresponds to David Denby, x2 corresponds to Todd McCarthy, and so on.

2

Note 2 Informatics 2B - Learning

Body of Burn After Revolutionary
Australia Lies Reading Hancock Milk Road

David Denby
(New Yorker) 3 7 4 9 9 7

Todd McCarthy
(Variety) 7 5 5 3 8 8

Joe Morgenstern
(Wall St Journal) 7 5 5 0 8 4

Claudia Puig
(USA Today) 5 6 8 5 9 8

Peter Travers
(Rolling Stone) 5 8 8 8 10 9

Kenneth Turan
(LA Times) 7 7 8 4 7 8

Table 2.1: Ratings given to six movies by six film critics (from http://www.metacritic.com).

If the critics have each reviewed a set of M films (movies), then we can imagine each critic defining a
point in an M-dimensional space, given by that critic’s review scores. The points are hard to visualise
in more than three dimensions (three films). Figure 2.1 shows a two dimensional version in which the
six critics are placed in a space defined by their reviews of two films. As more users are made available
they can be plotted on the chart, according to their ratings for those films. We make the assumption
that the closer two people are in this review space, then the more similar are their tastes.

Consider a new user who rates Hancock as 2, and Revolutionary Road as 7. This user is also shown in
the review space in Figure 2.1. Based on these two films, to which critic is the user most similar? It is
easy to see from the graph that the closest critic to the user is McCarthy. In this 2-dimensional case
Euclidean distance is:

r2(User,McCarthy) =
√

(2 − 3)2 + (7 − 8)2 =
√

2 ≈ 1.4

We can go ahead and use Equation (2.1) to compute the Euclidean distances between six critics in the
6-dimensional review space:

Denby McCarthy Morgenstern Puig Travers Turan

Denby 7.7 10.6 6.2 5.2 7.9
McCarthy 7.7 5.0 4.4 7.2 3.9

Morgenstern 10.6 5.0 7.5 10.7 6.8
Puig 6.2 4.4 7.5 3.9 3.2

Travers 5.2 7.2 10.7 3.9 5.6
Turan 7.9 3.9 6.8 3.2 5.6

Thus the two closest critics, based on these films, are Claudia Puig and Kenneth Turan.

Consider a new user who has not seen Hancock, Australia or Milk, but has supplied ratings to the other
three films:

3



Note 2 Informatics 2B - Learning

0 2 4 6 8 10

0
2

4
6

8
1
0

Hancock

R
e
v
o
lu
ti
o
n
a
ry
R
o
a
d

Denby

McCarthy

Morganstern

Puig

Travers

Turan

User

Figure 2.1: Plot of critics in a 2-dimensional review space for Hancock and Revolutionary Road. For
the pair of films under consideration the Euclidean distance between two points provides a measure of
how different two reviewers are.

Body of Burn After Revolutionary
Lies Reading Road

User2 6 9 6

Using a 3-dimensional space defined by the films that User2 has rated, we can compute the distances
to each critic:

Critic r2(critic, user2)

Denby
√

27 ≈ 5.2
McCarthy

√
21 ≈ 4.6

Morgenstern
√

21 ≈ 4.6
Puig

√
5 ≈ 2.2

Travers
√

14 ≈ 3.7
Turan

√
6 ≈ 2.4

Thus, based on these three films, User2 is most similar to Claudia Puig. Can we use this information
to build a simple recommender system? Or, more specifically, can we use this information to decide
which film out of Milk, Hancock and Australia the system should recommend to User2 based on their
expressed preferences?

We would like to rely on the most similar critics, so we convert our distance measure into a similarity
measure:

sim(u, v) =
1

1 + r2(u, v)
. (2.5)

4

Note 2 Informatics 2B - Learning

We have chosen an ad hoc measure of similarity based on Euclidean distance. However, it has some
desirable properties: a distance of 0 corresponds to a similarity of 1 (the largest value it can take); a
distance of∞ corresponds to a similarity of 0 (the smallest it can take). We now use this measure to
list the critics’ similarity to User2:

Critic sim(critic, user2)

Denby 0.16
McCarthy 0.18

Morgenstern 0.18
Puig 0.31

Travers 0.21
Turan 0.29

One way to make a recommendation for User2 would be to choose the most similar critic, and then
to choose the movie that they ranked most highly. This approach has a couple of drawbacks: (1)
it does nothing to smooth away any peculiarities of that critic’s rankings; and (2) in the case when
recommender systems are applied (e.g., online shops) the population of ‘critics’ may be very large
indeed, and there may be quite a large number of similar user profiles. An alternative way to make a
ranking for User2 would be to weight the rating of each critic by the similarity to User2. An overall
score for each film can be obtained by summing these weighted rankings. If u is the user, and we have
C critics, then the estimated score given to film m by u, scu(m), is obtained as follows:

scu(m) =
1

∑C
c=1 sim(x̃u, x̃c)

C∑

c=1

sim(x̃u, x̃c) · xcm , (2.6)

where x̃u is a vector of ratings for the films seen by u, and x̃c is the vector of corresponding film
ratings from critic c. In this example, x̃u and x̃c are 3-dimensional vectors, whereas the original xc is a
6-dimensional vector. The term 1/

∑C
c=1 sim(x̃u, x̃c) is used to normalise the weighted sum of scores to

estimate the user’s score for the film.

We can compute an estimate of User2’s score for each film using Equation (2.6). We’ll make the
computation explicit in a table:

Australia Hancock Milk
Similarity Score Sim · Score Score Sim · Score Score Sim · Score

Denby 0.16 3 0.48 9 1.44 9 1.44
McCarthy 0.18 7 1.26 3 0.54 8 1.44

Morgenstern 0.18 7 1.26 0 0.00 8 1.44
Puig 0.31 5 1.55 5 1.55 9 2.79

Travers 0.21 5 1.05 8 1.68 10 2.10
Turan 0.29 7 2.03 4 1.16 7 2.03

Total 1.33 7.63 6.37 11.24
Est. Score 5.7 4.8 8.5

So the recommender system would propose Milk to User2. But more than just proposing a single film,
it provides an estimate of the rating that User2 would provide to each film based on User2’s ratings
of other films, the estimated similarity of User2 to each critic, and the ratings of the critics to films
unseen by User2.

5



Note 2 Informatics 2B - Learning

Some questions:

• What do we do if not all the critics have seen the same set of movies? Are the distance/similarity
methods between different pairs of people comparable if they are computed across different
spaces (i.e., different sets of ratings)? Is there something we can do to make them more
comparable?

• How do we deal with the fact that some critics may score more highly on average than others?
Or that some critics have a wider spread of scores than others?

We can also solve the transposed problem: instead of measuring the similarity between people, we can
measure the similarity between films. In this case we will have a space whose dimension is the number
of critics, and each point in the space corresponds to a film. Transposing the previous data matrix:



3 7 4 9 9 7
7 5 5 3 8 8
7 5 5 0 8 4
5 6 8 5 9 8
5 8 8 8 10 9
7 7 8 4 7 8



T

=



3 7 7 5 5 7
7 5 5 6 8 7
4 5 5 8 8 8
9 3 0 5 8 4
9 8 8 9 10 7
7 8 4 8 9 8



,

each row corresponds to a feature vector for a film:

w1 = (3, 7, 7, 5, 5, 7)T

...

w6 = (7, 8, 4, 8, 9, 8)T ,

where w1 corresponds to Australia, w2 corresponds to Body of Lies, and so on.

We can then go ahead and compute the distances between films in the space of critics’ ratings, in a
similar way to before:

Australia Body of Lies Burn After Reading Hancock Milk Revolutionary Road

Australia 5.8 5.3 10.9 8.9 7.2
Body of Lies 5.8 3.7 6.6 5.9 4.0

Burn After Reading 5.3 3.7 8.9 7.0 4.5
Hancock 10.9 6.6 8.9 10.9 8.4

Milk 8.9 5.9 7.0 10.9 4.8
Revolutionary Road 7.2 4.0 4.5 8.4 4.8

Therefore if a user, for whom we have no history of ratings chooses Body of Lies, then based on our
stored critics’ ratings we would recommend Burn After Reading and Revolutionary Road as the two
most similar films.

To summarise:

1. We represented the rating data from C critics about M films (movies) as a C × M matrix.

2. Each row of this data matrix corresponds to a critic’s feature vector in ‘review space’.

3. We can compute the distance between feature vectors, to give measure of dissimilarity between
critics.

6

Note 2 Informatics 2B - Learning

4. We can use this information to construct a simple recommender system.

5. If we take the transpose of the data matrix, then each row corresponds to a film’s feature vector;
distance measures between these vectors correspond to dissimilarity between films.

2.3 Similarity using correlation

2.3.1 Normalisation

So far our estimate of similarity has been based on the Euclidean distance between feature vectors in a
review space. But this distance is not well normalised. For example, two critics may rank a set of films
in the same order, but if one critic gives consistently higher scores to all movies than the other, then the
Euclidean distance will be large and the estimated similarity will be small. In the data we have been
working with (Table 2.1) some critics do give higher scores on average: the mean review ratings per
critic range from 4.8 to 8.0.

One way to normalise the scores given by each critic is to transform each score into a standard
score1. The standard scores are defined such that the set of scores given by each critic have the
same sample mean and sample standard deviation. We first compute the sample mean and sample
standard deviation for each critic. Consider an M-dimensional feature vector corresponding to critic c,
xc = (xc1, xc2, . . . , xcM) , where xcm is critic c’s rating for movie m. We can compute the sample mean
x̄c and sample standard deviation sc for critic c as follows2:

x̄c =
1
M

M∑

m=1

xcm (2.7)

sc =

√√
1

M−1

M∑

m=1

(
xcm − x̄c

)2
. (2.8)

We then use these statistics to normalise xcm (the critic c’s score for movie m) to a standard score,

zcm =
xcm − x̄c

sc
. (2.9)

The z scores for a critic c are normalised with a mean of 0 (obtained by subtracting the mean score
from the xc scores) and a sample standard deviation of 1 (obtained by dividing by the sample standard
deviation of the xc scores). Thus using these normalised scores for each critic removes the offset effect
of differing means and the spread effect of differing variances.

2.3.2 Pearson Correlation Coefficient

There are many other ways that we could measure similarity. One measure that has been used a lot in
data mining, and collaborative filtering in particular, is a measure based on the correlation between

1Standard scores are also called z-values, z-scores, and normal scores.
2The ‘sample standard deviation’ is the square-root of the ‘sample variance’. Different books give different definitions

of the ‘sample variance’, which is an estimate of the ‘true’ variance of a population from a limited number of samples.
Equation (2.8) uses an ‘unbiased’ estimate of the true variance. Another version of variance replaces ‘M−1’ with ‘M’,
which is normally called a ‘population variance’, meaning the samples you have got are assumed to be the whole population
rather than its subset. This way of calculating variance gives a ‘biased’ estimate if it is used as an estimate of the true
variance of a population. For large sample sizes, as commonly-found in machine learning, the difference usually doesn’t
matter. Matlab/Octave use the ‘M−1’ estimator by default, and Python’s scipy package uses the ‘M’ estimator by default,
although both have options to use the other.

7



Note 2 Informatics 2B - Learning

0 2 4 6 8 10

0
2

4
6

8
1
0

Denby

T
ra
v
e
rs

Australia

BodyOfLies
BurnAfterReading

Hancock

Milk

RevolutionaryRoad

Figure 2.2: Plot of films in a 2-dimensional space defined by the ratings of David Denby and Peter
Travers. The best fit straight line for these points is also plotted.

users’ ratings. Rather than considering the distance between feature vectors as a way to estimate
similarity, we can consider the correlation between the critics scores. Figures 2.2 and 2.3 each plot
films in terms of the ratings of two specified critics, along with a best fit straight line. If the ratings of
the two critics are closely related (similar) then the best-fit line will (almost) touch every item; if the
films are generally far from the best fit line then the review scores are not well associated (dissimilar).
We can see that the scores of Travers and Denby (Figure 2.2) are much better correlated than the
scores of McCarthy and Denby (Figure 2.3); although Denby has lower ratings on average than that of
Travers, this does not affect the correlation.

To estimate the correlation between two sets of scores we use the Pearson Correlation Coefficient. To
estimate this we first normalise the scores for each critic to stand scores, using Equations (2.7), (2.8)
and (2.9). We can then compute the Pearson correlation coefficient between critics c and d, rcd as 3 :

rcd =
1

M−1

M∑

m=1

zcm zdm (2.10)

=
1

M−1

M∑

m=1

(
xcm − x̄c

sc

) (
xdm − x̄d

sd

)
. (2.11)

If zcm tends to be large when zdm is large and zcm tends to be small when zdm is small, then the correlation
coefficient will tend towards 1. If zcm tends to be large when zdm is small and zcm tends to be small
when zdm is large, then the correlation coefficient will tend towards −1. If there is no relation between
critics c and d, then their correlation coefficient will tend towards 0.

In the above examples, the correlation between Denby and Travers is 0.76 and the correlation between

3If we define sample covariance as scd =
1

M−1

M∑

m=1

(xcm − x̄c)(xdm − x̄d), Equation (2.11) can be rewritten as rcd =
scd

scsd
.

8

Note 2 Informatics 2B - Learning

0 2 4 6 8 10

0
2

4
6

8
1
0

Denby

M
c
C
a
rt
h
y

Australia

BodyOfLies
BurnAfterReading

Hancock

MilkRevolutionaryRoad

Figure 2.3: Plot of films in a 2-dimensional space defined by the ratings of David Denby and Todd
McCarthy. The best fit straight line for these points is also plotted

Denby and McCarthy is −0.12. For comparison the similarities based on Euclidean distance are 0.16
and 0.11.

9



Note 2 Informatics 2B - Learning

Exercise: Using the Python function you will write in Tutorial 3, show that the similarities between
critics obtained using the correlation coefficient are as below. Compare these similarities with those
obtained using the Euclidean distance.

Similarities based on Euclidean distances between critics:

Denby McCarthy Morgenstern Puig Travers Turan

Denby 1 0.11 0.09 0.14 0.16 0.11
McCarthy 0.11 1 0.17 0.19 0.12 0.20

Morgenstern 0.09 0.17 1 0.12 0.09 0.13
Puig 0.14 0.19 0.12 1 0.20 0.24

Travers 0.16 0.12 0.09 0.20 1 0.15
Turan 0.11 0.20 0.13 0.24 0.15 1

Pearson correlation coefficient similarities between critics

Denby McCarthy Morgenstern Puig Travers Turan

Denby 1 -0.12 -0.36 0.14 0.76 -0.55
McCarthy -0.12 1 0.75 0.53 0.18 0.61

Morgenstern -0.36 0.75 1 0.44 -0.04 0.64
Puig 0.14 0.53 0.44 1 0.73 0.65

Travers 0.76 0.18 -0.04 0.73 1 0.08
Turan -0.55 0.61 0.64 0.65 0.08 1

2.4 Reading

Further reading on recommender systems in chapter 2 of Segaran.
Pearson’s correlation is widely used to find relationship between two data, but it should be noted that
the measure does not tell you causation (cause and effect). Many people, even some scientists, confuse
correlation and causation, and derive wrong conclusions. See those references for details:
https://en.wikipedia.org/wiki/Correlation_does_not_imply_causation

https://www.americanscientist.org/article/what-everyone-should-know-about-statistical-correlation

10

Note 2 Informatics 2B - Learning

Exercises

1. Consider two column vectors such that a = (1, 2, 3)T and b = (−3, 3,−1)T .

(a) Find rp(a,b) for p = 1 and 2.

2. We have studied that the Pearson correlation coefficient for two data sets represented as vectors,
x = {xn}N1 and y = {yn}N1 , is given by

rxy =
1

N−1

N∑

n=1

(
xn − x̄

sx

) (
yn − ȳ

sy

)
.

Now, show that it can be rewritten as

rxy =

∑N
n=1(xn − x̄)(yn − ȳ)

√∑N
n=1(xn − x̄)2

√∑N
n=1(yn − ȳ)2

.

3. Consider five vectors such that x1 = (1, 2, 3)T , x2 = (2, 3, 1)T , x3 = (1, 2, 1)T , x4 = (2, 4, 6)T , x5 =

(−1,−2,−3)T . Find the Pearson correlation coefficient for each of the following pairs.

(a) x1 and x2.

(b) x1 and x3.

(c) x1 and x4.

(d) x1 and x5.

11



Note 3 Informatics 2B - Learning

Clustering and Visualisation of Data

Hiroshi Shimodaira∗

January-March 2020

Cluster analysis aims to partition a data set into meaningful or useful groups, based on distances
between data points. In some cases the aim of cluster analysis is to obtain greater understanding of the
data, and it is hoped that the clusters capture the natural structure of the data. In other cases cluster
analysis does not necessarily add to understanding of the data, but enables it to be processed more
efficiently.

Cluster analysis can be contrasted with classification. Classification is a supervised learning process:
there is a training set in which each data item has a label. For example, in handwriting recognition the
training set may correspond to a set of images of handwritten digits, together with a label (‘zero’ to
‘nine’) for each digit. In the test set the label for each image is unknown: it is the job of the classifier to
predict a label for each test item.

Clustering, on the other hand, is an unsupervised procedure in which the training set does not contain
any labels. The aim of a clustering algorithm is to group such a data set into clusters, based on the
unlabelled data alone. In many situations there is no ‘true’ set of clusters. For example consider
the twenty data points shown in Figure 3.1 (a). It is reasonable to divide this set into two clusters
(Figure 3.1 (b)), four clusters (Figure 3.1 (c)) or five clusters (Figure 3.1 (d)).

There are many reasons to perform clustering. Most commonly it is done to better understand the data
(data interpretation), or to efficiently code the data set (data compression).

Data interpretation: Automatically dividing a set of data items into groups is an important way to
analyse and describe the world. Automatic clustering has been used to cluster documents (such as
web pages), user preference data (of the type discussed in the previous chapter), and many forms of
scientific observational data in fields ranging from astronomy to psychology to biology.

Data compression: Clustering may be used to compress data by representing each data item in a
cluster by a single cluster prototype, typically at the centre of the cluster. Consider D-dimensional data
which has been clustered into K clusters. Rather than representing a data item as a D-dimensional
vector, we could store just its cluster index (an integer from 1 to K). This representation, known as
vector quantisation, reduces the required storage for a large data set at the cost of some information
loss. Vector quantisation is used in image, video and audio compression.

3.1 Types of clustering

There are two main approaches to clustering: hierarchical and partitional. Hierarchical clustering
forms a tree of nested clusters in which, at each level in the tree, a cluster is the union of its children.

∗ c©2014-2020 University of Edinburgh. All rights reserved. This note is heavily based on notes inherited from Steve
Renals and Iain Murray.

1

Note 3 Informatics 2B - Learning

0 5 10 15 20

0
5

1
0

1
5

2
0

0 5 10 15 20

0
5

1
0

1
5

2
0

(a) original data (b) two clusters

0 5 10 15 20

0
5

1
0

1
5

2
0

0 5 10 15 20

0
5

1
0

1
5

2
0

(c) four clusters (d) five clusters

Figure 3.1: Clustering a set of 20 two-dimensional data points.

2



Note 3 Informatics 2B - Learning

Partitional clustering does not have a nested or hierarchical structure, it simply divides the data set
into a fixed number of non-overlapping clusters, with each data point assigned to exactly one cluster.
The most commonly employed partitional clustering algorithm, K-means clustering, is discussed
below. Whatever approach to clustering is employed, the core operations are distance computations:
computing the distance between two data points, between a data point and a cluster prototype, or
between two cluster prototypes.

There are two main approaches to hierarchical clustering. In top-down clustering algorithms, all the
data points are initially collected in a single top-level cluster. This cluster is then split into two (or
more) sub-clusters, and each these sub-clusters is further split. The algorithms continues to build a
tree structure in a top down fashion, until the leaves of the tree contain individual data points. An
alternative approach is agglomerative hierarchical clustering, which acts in a bottom-up way. An
agglomerative clustering algorithm starts with each data point defining a one-element cluster. Such an
algorithm operates by repeatedly merging the two closest clusters until a single cluster is obtained.

3.2 K-means clustering

K-means clustering aims to divide a set of D-dimensional data points into K clusters. The number of
clusters, K, must be specified, it is not determined by the clustering: thus it will always attempt to find
K clusters in the data, whether they really exist or not.

Each cluster is defined by its cluster centre, and clustering proceeds by assigning each of the input
data points to the cluster with the closest centre, using a Euclidean distance metric. The centre of each
cluster is then re-estimated as the centroid of the points assigned to it. The process is then iterated.
The algorithm is:

• Initialise K cluster centres, {mk}K1
• While not converged :

– Assign each data vector xn (1 ≤ n ≤ N) to the closest cluster centre;

– Recompute each cluster mean as the mean of the vectors assigned to that cluster

The algorithm requires a distance measure to be defined in the data space, and the Euclidean distance
is often used.

The initialisation method needs to be further specified. There are several possible ways to initialise the
cluster centres, including:

• Choose random data points as cluster centres

• Randomly assign data points to K clusters and compute means as initial centres

• Choose data points with extreme values

• Find the mean for the whole data set then perturb into K means

All of these work reasonably, and there is no ‘best’ way. However, as discussed below, the initialisation
has an effect on the final clustering: different initialisations lead to different cluster solutions.

The algorithm iterates until it converges. Convergence is reached when the assignment of points to
clusters does not change after an iteration. An attractive feature of K-means is that convergence is

3

Note 3 Informatics 2B - Learning

0 5 10
0

10

5

(1,1)

(1,2)

(3,1)

(4,5)

(5,2)

(5,4)

(6,6) (7,6)

(8,4)

(10,5)

(10,0)

(2,9)

(4,13)

(7,8)

(a) Initialisation

0 5 10
0

10

5

(1,1)

(1,2)

(3,1)

(4,5)

(5,2)

(5,4)

(6,6)
(7,6)

(8,4)

(10,5)

(10,0)

(2,9)

(4,13)

(7,8)

(4.33, 10)

(3.57, 3)

(8.75,3.75)

(b) After one iteration

0 5 10
0

10

5

(1,1)

(1,2)

(3,1)

(4,5)

(5,2)

(5,4)

(6,6)
(7,6)

(8,4)

(10,5)

(10,0)

(2,9)

(4,13)

(7,8)

(4.33, 10)

(3.17, 2.5)

(8.2,4.2)

(c) After two iterations

Figure 3.2: Example of K-means algorithm applied to 14 data points, K =3. The lines indicate the
distances from each point to the centre of the cluster to which it is assigned. Here only one point (6,6)
moves cluster after updating the means. In general, multiple points can be reassigned after each update
of the centre positions.

4



Note 3 Informatics 2B - Learning

0 5 10
0

5

(1,1) (3,1) (5,1)

(5,3) (7,3) (9,3)

(a) Within-cluster sum-squared error = 4

0 5 10
0

5

(1,1) (5,1)

(5,3) (9,3)

(6.33,2.33)

(b) Within-cluster sum-squared error = 3.33

Figure 3.3: Two different converged clusterings for the same data set, but starting from different
initialisations.

guaranteed. However, the number of iterations required to reach convergence is not guaranteed. For
large datasets it is often sensible to specify a maximum number of iterations, especially since a good
clustering solution is often reached after a few iterations. Figure 3.2 illustrates the K-means clustering
process. Figure 3.3 illustrates how different initialisations can lead to different solutions.

3.3 Mean squared error function

K-means clustering is an intuitively sensible algorithm, but is it possible to get a better mathematical
description of what is going on? To compare two different clusterings into K clusters we can use the
mean squared error function, which can be thought of as measuring the scatter of the data points
relative to their cluster centres. Thus if we have two sets of K clusters, it makes sense to prefer the one
with the smallest mean squared error: the clustering with the lowest scatter of data points relative to
their cluster centres.

Let us define an indicator variable znk, such that znk = 1 if the n th data point xn belongs to cluster k and
znk = 0 otherwise. Then we can write the mean squared error as

E =
1
N

K∑

k=1

N∑

n=1

znk‖xn −mk‖2, (3.1)

where mk is the centre of cluster k, N is the number of data points in total, and ‖ · ‖ denotes the
Euclidean norm (i.e. L2-norm) of a vector. Another way of viewing this error function is in terms
of the squared deviation of the data points belonging to a cluster from the cluster centre, summed
over all centres. This may be regarded as a variance measure for each cluster, and hence K-means
is sometimes referred to as minimum variance clustering. Like all variance-based approaches this
criterion is dependent on the scale of the data. In the introduction we said that the aim of clustering
was to discover a structure of clusters such that points in the same group are close to each other, and
far from points in other clusters. The mean squared error only addresses the first of these: it does not
include a between-clusters term.

Depending on the initialisation of the cluster centres, K-means can converge to different solutions; this
is illustrated in Figure 3.3. The same data set of 4 points, can have two different clusterings, depending
on where the initial cluster centres are placed. Both these solutions are local minima of the error
function, but they have different error values. For the solution in Figure 3.3a, the error is:

E =
((4 + 4) + (4 + 4))

4
= 4 .

5

Note 3 Informatics 2B - Learning

The second solution (Figure 3.3b) has a lower error:

E =
0 + (32/9 + 20/9 + 68/9)

4
=

10
3
< 4 .

We have discussed the batch version of K-means. The online (sample-by-sample) version in which a
point is assigned to a cluster and the cluster centre is immediately updated is less vulnerable to local
minima.

There are many variants of K-means clustering that have been designed to improve the efficiency and
to find lower error solutions.

3.4 Dimensionality reduction and data visualisation

Another way of obtaining better understanding of the data is to visualise it. For example, we could
easily see the shapes of data clusters or spot outliers if they are plotted in a two or three dimensional
space. It is, however, not straightforward to visualise high-dimensional data.

A simple solution would be to pick up only two components out of D ones and plot them in the
same manner as we did for Figure 1 in Note 2, in which we picked up two films, ‘Hancock’ and
‘Revolutionary Road’ out of 6 films to plot critics. We would, however, need to draw more number of
plots with different combinations of films to grasp the distribution of data.

A more general way of visualising high-dimensional data is to transform the data to the one in a
two-dimensional space. For example, we can apply a linear transformation or mapping using a unit
vector u = (u1, . . . , uD)T in the original D-dimensional vector space.1 Calculating a dot-product
(Euclidean inner-product) between u and xn gives a scalar yn:

yn = u · xn = uT xn = u1xn1 + · · · + uDxnD (3.2)

which can be regarded as the orthogonal projection of xn on the axis defined by u.

We now consider another unit vector v that is orthogonal to u, and project xn orthogonally on it to get
another scalar zn:

zn = v · xn = vT xn = v1xn1 + · · · + vDxnD . (3.3)

You will see that xn is mapped to a point (yn, zn)T in a two-dimensional space, and the whole {xn}N1 can
be mapped to

{
(yn, zn)T

}N
1

in the same manner. It is easy to see that the resultant plots depend on the
choice of u and v. One option is to choose the pair of vectors that maximise the total variance of the
projected data:

max
u,v

Var (y) + Var (z)

subject to ‖u‖=1, ‖v‖=1,u ⊥ v .
(3.4)

This means that we try to find a two dimensional space, i.e., a plane, such that the projected data on the
plane spread as wide as possible rather than a plane on which the data are concentrated in a small area.
It is known that the optimal projection vectors are given by the eigenvectors of the sample covariance

1NB : ‖u‖ = 1 by definition.

6



Note 3 Informatics 2B - Learning

6

7

8

9

10

11

12

13

2 4 6 8 10 12 14

2
n
d
 
p
r
i
n
c
i
p
a
l
 
c
o
m
p
o
n
e
n
t

1st principal component

Denby

McCarthy

Morgenstern

Puig
Travers

Turan

Figure 3.4: Plot of the critics in the 2-dimensional space defined by the first two principal components.
(see Note 2)

matrix2, S, defined as

S =
1

N−1

N∑

n=1

(xn − x̄)(xn − x̄)T (3.5)

x̄ =
1
N

N∑

n=1

xn . (3.6)

If scalar representation is preferred to the matrix one above, the element si j at i’th row and j’th column
of S, is given as:

si j =
1

N−1

N∑

n=1

(xni − mi)(xn j − m j) (3.7)

mi =
1
N

N∑

n=1

xni . (3.8)

To be explicit, let {λ1, . . . , λD} be the eigenvalues sorted in decreasing order so that λ1 is the largest and
λD is the smallest, the optimal projection vectors u∗ and v∗ are the eigenvectors that correspond to the
two largest eigenvalues λ1 and λ2. Figure 3.4 depicts the scatter plot with the method for the example
shown in Note 2.3

Generally speaking, if we would like to effectively transform xn in a D-dimensional space to yn in a
lower ℓ-dimensional space (ℓ < D), it can be done with the eigenvectors, p1, . . . ,pℓ, that correspond to

2Covariance matrix is an extension of the variance for univariate case to the multivariate (multi-dimensional) case. We
will see more details about covariance matrices in Note 8, where we consider Gaussian distributions.

3Someone might wonder how each film (review scores) contributes to the principal components. This can be confirmed
with ‘factor loading(s)’, which is the correlation coefficient between the principal component and the review scores of the
film.

7

Note 3 Informatics 2B - Learning

the ℓ largest eigenvalues λ1, . . . , λℓ :

yn =



pT
1
...

pT
ℓ

 xn =



pT
1 xn
...

pT
ℓ xn

 . (3.9)

This technique is called principal component analysis (PCA) and widely used for data visualisation,
dimensionality reduction, data compression, and feature extraction. 4

3.5 Summary

In this chapter we have:

1. introduced the notion of clustering a data set into non-overlapping groups using hierarchical or
partitional approaches;

2. described the most important partitional algorithm, K-means clustering;

3. defined a within-cluster mean squared error function for K-means clustering;

4. introduced the notion of dimensionality reduction for data visualisation;

5. described the technique, principal component analysis (PCA) for dimensionality reduction.

The key properties of K-means are that it:

• Is an automatic procedure for clustering unlabelled data.

• Requires a pre-specified number of clusters.

• Chooses a set of clusters with the minimum within-cluster variance.

• Is guaranteed to converge (eventually, in a finite number of steps).

• Provides a locally optimal solution, dependent on the initialisation.

3.6 Reading

Further reading

• Bishop, section 9.1 (on clustering)

• Bishop, section 12.1 (on principal component analysis)

• Segaran, chapter 3 (on clustering)

4It is almost always the case that reducing dimensionality involves degradation, i.e., loss of information. The ratio,∑ℓ
i=1 λi/

∑D
i=1 λi, indicates how much amount of information retains after the conversion.

8



Note 3 Informatics 2B - Learning

Exercises

1. Consider a data set of one-dimensional samples {1, 3, 5, 6, 8, 9}.
(a) Cluster the data set into two clusters using the k-means clustering, with the cluster initialised

to 2 and 7.

(b) What if the initial cluster centres are 6 and 8?

2. For k-means clustering, give an intuitive proof that the mean squared error does not increase
after each iteration.

3. Assume we have calculated a covariance matrix S for a set of samples in a 3D space, and
obtained eigenvectors and eigenvalues of S , which are given as follows:

Eigenvalues Eigenvectors
λ1 = 1.0 p1 = (0.492404, −0.809758, 0.319109)T

λ2 = 0.9 p2 = (−0.086824, 0.319109, 0.943732)T

λ3 = 0.001 p3 = (−0.866025, −0.492404, 0.086824)T

Using dimensionality reduction with PCA, plot the following four samples on a 2D plane.

x1 = (0.88932, −1.30533, 1.58282)T

x2 = (1.07097, −0.83358, 2.49964)T

x3 = (0.14555, −0.27002, 2.22394)T

x4 = (0.49218, −0.44141, 1.25416)T

9

Note 4 Informatics 2B - Learning

Classification and K-Nearest Neighbours

Hiroshi Shimodaira∗

January-March 2020

In the previous chapter we looked at how we can use a distance measure to organise a data set into
groupings. In this chapter—and for most of the rest of the course—we look at the case where each data
point has a label, identifying it as a member of a class. In the recognition of handwritten digits, for
example, there are ten possible labels corresponding to the digits ‘0’–‘9’. The problem of classification
is to predict the correct label for an input feature vector. The classifier is obtained using a set of training
data containing feature vectors and their labels. This is referred to as supervised learning, since the
label for a training vector acts as supervision for the classifier when it is learning from training data.

Let’s introduce some notation: x = (x1, x2, . . . , xD)T is a D-dimensional (input) feature vector, which
has class label c. The training set is a set of N feature vectors and their class labels; the n’th training
item consists of a feature vector xn and its class label cn. The j’th element of the n’th feature vector is
written xn j. A learning algorithm is used to train a classifier using the training set. Testing involves
assigning a class to an unlabelled feature vector x.

We can measure how accurate a classifier is using an error function. A suitable error function for
classification is the number of items that are misclassified—i.e., the number of times the classifier
assigns a class label different from the true class label. The classification error is often expressed as the
percentage of the total number of items that is misclassified, the ‘error rate’. We also need to specify
on which set of data the error function was measured. The ‘training set error rate’ is the percentage of
misclassifications that the classifier makes on the training set after the learning algorithm has been
applied. The ‘test set error rate’ refers to errors made by the classifier on a set of data not used by the
learning algorithm—the test set.1

4.1 A simple example

Consider the problem of determining apples from pears. In this example case we have two features
for each piece of fruit: its circumference (at the widest point) and its height, each measured in cm.
Apples are ‘more spherical’ than pears which tend to be longer than they are wide. But some pears are
relatively short and some apples are taller than expected. In this case we have an input vector of the
form x = (x1, x2)T , where x1 is the circumference and x2 the height. The class C can take two values A
or P (standing for apples and pears).

We have a set of training data: height and circumference measurements, along with class labels. In
Figure 4.1 we plot this two dimensional training data for the two classes. We can see that pears tend to
have a greater height and smaller circumference compared with apples; however it is not possible to
draw a straight line to separate the two classes (Figure 4.1).

∗ c©2014-2020 University of Edinburgh. All rights reserved. This note is heavily based on notes inherited from Steve

1



Note 4 Informatics 2B - Learning

10

5

15 20 Circumference/cm

H
ei
gh
t/
cm

pears

apples

Figure 4.1: Training data for apples and pears. It is not possible to draw a straight line to perfectly
separate the classes in this feature space. Three possible lines are drawn, but each results in a number
of misclassifications.

We now have three new, unlabelled examples which we would like to classify (represented as stars in
Figure 4.2):

• (16, 10): all the training data in the region of this point is classified as P, so we classify this point
as P.

• (19, 6): looking at the training data it seems obvious to class this as A.

• (17, 7): its not obvious in which class this example should be classified; the feature vector gives
us evidence whether we have an apple or a pear, but does not enable us to make an unambiguous
classification.

We can draw a straight line such that one side of it corresponds to one class and the other side to the
other—as in the three possible lines shown in Figure 4.1. Such a line is called a decision boundary;
if the data was three-dimensional, then the decision boundary would be defined by a plane. For
one-dimensional data, a decision boundary can simply be a point on the real line. Intuitively it seems
possible to find an optimal decision boundary, based on minimising the number of misclassifications
in the training set. Although we use the training set to determine the decision boundary, we are most
interested in making optimal decisions on a test set.

Renals and Iain Murray.
1The technique of using separate data sets for training and testing is referred to as cross validation.

2

Note 4 Informatics 2B - Learning

10

5

15 20 Circumference/cm

H
ei
gh
t/
cm

Figure 4.2: The training data for apples and pears, together with three test points.

4.2 K-Nearest Neighbour

An intuitive way to decide how to classify an unlabelled test item is to look at the training data points
nearby, and make the classification according to the classes of those nearby labelled data points. This
intuition is formalised in a classification approach called K-nearest neighbour (k-NN) classification.

Nearest neighbour classification has a very simple basis: to classify a test item, find the item in the
training set which is closest and assign the test item to the same class as the selected training item. If
there happens to be an identical item in the training set then it makes sense to assign the test item to
the same class. Otherwise, the class of the member in the training set which is most similar to the test
item is our best guess. We use a distance measure (e.g., Euclidean distance) to determine similarity. If
we have a representation for which the distance measure is a reasonable measure of similarity, then the
nearest neighbour method will work well.

4.2.1 K-Nearest Neighbour classification algorithm

Rather than just using the single closest point, the K-nearest neighbour approach looks at the K points
in the training set that are closest to the test point; the test point is classified according to the class to
which the majority of the K-nearest neighbours belong. For the first two items above, the value of K
is not really important: (16, 10) is classified as P and (19, 6) is classified as A, no matter how many
nearest neighbours are considered. However the third example above, (17, 7), is ambiguous, and this is
reflected in the sensitivity of the classifier to the value of K:

• 1-nearest: classified as pear

3



Note 4 Informatics 2B - Learning

• 2-nearest: tie (one apple and one pair are nearest neighbours). In this case, just choose randomly
between the two classes

• 3-nearest: classified as apple

• 5-nearest: classified as pear

• 9-nearest: classified as apple

K-nearest neighbour is very efficient at training time, since training simply consists of storing the
training set.2 Testing is much slower, since it can potentially involve measuring the distance between
the test point and every training point, which can make K-nearest neighbour impractical for large data
sets.

We can write the K-nearest neighbour algorithm precisely as follows, where X is the training data set
with class labels so that X = {(x, c)}, Z is the test set, there are C possible classes, and r is the distance
metric (typically the Euclidean distance):

• For each test example z ∈ Z:

– Compute the distance r(z, x) between z and each training example (x, c) ∈ X

– Select Uk(z) ⊆ X, the set of the k nearest training examples to z

– Decide the class of z by the majority voting:

c(z) = arg max
j ∈ {1,...,C}

∑

(x,c) ∈Uk(z)

δ j c (4.1)

where the Kronecker delta δ j c=1 when j=c and zero otherwise. It is sometimes possible to store the
training data set in a data structure that enables the nearest neighbours to be found efficiently, without
needing to compare with every training data point (in the average case). One such data structure is
the k-d tree. However, these approaches are usually only fast in practice with fairly low-dimensional
feature vectors, or if approximations are made.

4.2.2 Decision boundaries by K-NN classification

K-nearest neighbour classifiers make their decisions on the basis of local information. Rather than
trying to draw decision boundaries across the whole space (as in Figure 4.1), K-nearest neighbour
techniques make decisions based on a few local points. As such they can be quite susceptible to noise,
especially if K is small: a small shift in the location of a test point can result in a different classification
since a new point from the training data set becomes the nearest neighbour. As K becomes larger,
the classification decision boundary becomes smoother since several training points contribute to the
classification decision.

What do the decision boundaries look like for nearest neighbour classification? Consider a special
case of 1-nearest neighbour classification in which each training data point belongs to a distinct class
from the others. In that case each training data point defines a region around it; test points within this
region will be classified to the same class as the training data point. These regions are illustrated for
a simple case in Figure 4.3, where the boundaries of regions are shown as dotted lines. As you may

2In practice, responsible machine learning practitioners will try out different choices of K, and different distance
measures, possibly optimising free parameters of a distance measure. Then training requires testing different choices, and
becomes expensive.

4

Note 4 Informatics 2B - Learning

understand now, each boundary is given as the perpendicular bisector of the line segment between the
two corresponding data points. This partitioning formed by a set of data points is sometimes called
Voronoi diagram or Voronoi tessellation.

0 1 2 3 4 5 6 7

0

1

2

3

4

5

Figure 4.3: Decision boundaries by 1-NN for data points of distinct classes from each other

0 1 2 3 4 5 6 7

0

1

2

3

4

5

Figure 4.4: Nearest neighbour regions for a training data set of two classes, where training samples of
one class are shown with ‘*’ in red, those of the other class are shown with ‘◦’ in blue. The Euclidean
distance is used as the distance measure in this example.

Now, we assume that each data points belongs to either of two classes, say, red or blue shown classes
as is shown in in Figure 4.4,

To obtain the decision boundary we combine those boundaries which are between regions of different

5



Note 4 Informatics 2B - Learning

classes, as illustrated in Figure 4.5. The resultant boundary is referred to as being piecewise linear.
Figures 4.6 and 4.7 show the case of three classes.

0 1 2 3 4 5 6 7

0

1

2

3

4

5

Figure 4.5: Decision boundary and decision regions for a 1-nearest neighbour classifier for two classes.

4.3 Reading

For further reading on K-nearest neighbour see

• Mitchell, sections 8.1 and 8.2

• Duda, Hart and Stork, sections 4.4, 4.5 and 4.6

6

Note 4 Informatics 2B - Learning

0 1 2 3 4 5 6 7

0

1

2

3

4

5

Figure 4.6: Nearest neighbour regions for a training data set of three classes.

0 1 2 3 4 5 6 7

0

1

2

3

4

5

Figure 4.7: Decision boundary and decision regions for a 1-nearest neighbour classifier for three
classes.

Exercises

1. Using Figure 4.3 as an example, explain why each line segment of Voronoi diagram is given as
the perpendicular bisector of the line segment between the two corresponding data points.

2. Randomly plot several points on a paper, draw a corresponding Voronoi diagram by hand.

7



Note 5 Informatics 2B - Learning

Introduction to Statistical Pattern Recognition and
Optimisation

Hiroshi Shimodaira∗

January-March 2020

When we are trying to make decisions, uncertainty arises due to:

• Inaccurate or incomplete information about the situation (for example due to noisy or inaccurate
sensors).

• A lack of complete knowledge about the situation (for example we may only have information
arising from the available sensors, perhaps missing out on other sources of information).

We must assume that only uncertain and partial information is available, and the system must make
decisions taking this into account. The mathematics of probability provides the way to deal with
uncertainty, and tells us how to update our knowledge and beliefs if new information becomes available.
This chapter introduces the use of probability and statistics for pattern recognition and learning.

5.1 A simple example

Consider the problem of determining the sex of fish. We could carefully examine the fish, which would
be slow and tedious. For many species of fish it is known that male fish tend to be longer than female
fish. It is much easier and faster to measure the length of a fish than to determine its sex directly. Thus
we would like a system to determine the sex of fish from their length, as accurately as possible.1

We will consider the following scenario: we have a set of labelled data that we can use as a training set.
This is a set of measurements of the length of each fish, together with the class label (male or female).
In Figure 5.1a we plot this dataset as two histograms, one for for each class (sex), showing the number
of fish of each length in each class. The length data comes as integer values (cm); later we’ll look at
directly modelling continuous valued data.

We now have four new, unlabelled examples with lengths 5 cm, 9 cm, 12 cm, 16 cm. How do we
classify each of these?

• 5 cm: It seems clear that it should be classified female, since we have never seen a male fish this
short. (But can we be sure that we will never see a male fish of this length?)

∗ c©2014-2020 University of Edinburgh. All rights reserved. This note is heavily based on notes inherited from Steve
Renals and Iain Murray.

1This is based on a real problem; there is a classic paper (R. Redner and H. Walker, “Mixture densities, maximum
likelihood, and the EM algorithm,” SIAM Rev. 26 (1984), pp.195–239.) which uses as an example the determination of the
sex of halibut using their length as the feature, based on data from the Seattle Fisheries Commission.

1

Note 5 Informatics 2B - Learning

Lengths of male fish

Length/cm

F
re

q
u

e
n

c
y

0 5 10 15 20

0
4

8
1

2

Lengths of female fish

Length/cm

F
re

q
u

e
n

c
y

0 5 10 15 20

0
4

8
1

2

(a) Histograms showing observed frequencies of lengths of male and
female fish.

Lengths of male fish

Length/cm

R
e
l.
 F

re
q
.

0 5 10 15 20

0
.0

0
0
.1

0
0
.2

0

Lengths of female fish

Length/cm

R
e
l.
 F

re
q
.

0 5 10 15 20

0
.0

0
0
.1

0
0
.2

0

(b) Histograms showing relative frequencies of lengths of male and
female fish. The dotted line shows a possible decision boundary
between male and female, based on the length.

Figure 5.1: Histograms showing lengths of male and female fish.

2



Note 5 Informatics 2B - Learning

• 16 cm: Likewise, it seems safe to classify the 16 cm fish as male

• 9 cm: We have observed both male and female fish that are 9 cm long, but about twice as many
females of that length as males. So it would seem sensible to classify that fish as female.

• 12 cm: We have also observed both male and female fish that are 12 cm long, but more male
than female, so it seems to make sense to classify that fish as male.

For the 9 cm and 12 cm cases (in particular), it is not possible to make an unambiguous classification.
The length of the fish gives us evidence whether it is male or female, but the length alone is not enough
information to be sure.

Rather than plotting the histograms with the observed frequencies for each length, we could plot
them using the relative frequencies—the proportions of male and female fish that are each length
(Figure 5.1b).

We can assign a particular value of the length to be a decision boundary—that value of the length at
which we assign all shorter fish to be female and longer ones to be male. A possible decision boundary
is marked by the dotted line in Figure 5.1b. Intuitively it seems like that this is a good decision point,
based on minimising the number of misclassifications in the training set. While we use the training set
to determine the decision boundary, we are most interested in classifying new data (a test set).

We can think of the relative frequencies as probability estimates; estimates of the probability of the
length given that the fish is male (or female). If we call the length X and the class S , then we can
write that the relative frequencies are estimates of P(X=ℓ | S =male) and P(X=ℓ | S = female): the
probability that the length X has value ℓ given that the fish is male (female).

Question: Imagine that you know that there are 10 times as many male fish as female fish. Would you
still make the same classifications?

5.2 Probability refresher

Before jumping into the use of probabilities for pattern recognition and learning, let’s briefly revise
basic probability.

Some events are deterministic: if you drop an apple, it will hit the floor (event A causes event B).

Some events are random. They may be intrinsically random (such as radioactive decay) or they may be
deterministic, but we do not have enough information (or it is prohibitive to do the computations). For
example tossing a coin is a deterministic physical process: if we had enough information (force of the
toss, weight of the coin, etc.) then it would be possible to compute the outcome of the toss precisely
(using Newtonian mechanics). Forecasting the weather is another example in this category, but much
more complex!

Probabilistic models are the correct model to use when acting under uncertainty: we never have the
whole truth. We can use probability theory to make decisions based on what we know.

5.2.1 What is probability?

This turns out to be a deep and controversial question! Indeed, there is still debate about the correct
interpretation of probability. There are two basic positions:

• Probability is a frequency limit: e.g., tossing a fair coin N times, n(heads)/N → 1/2 as N → ∞;

3

Note 5 Informatics 2B - Learning

• Probability is a degree of belief : e.g., given a set of symptoms a doctor may believe you a have a
particular disease with probability P(disease | symptoms);

It turns out that it is possible to derive the mathematics of probability starting from a small set of
axioms.

Sample space

A trial is the basic event which we want to model (e.g., toss of a coin, roll of a dice). A Sample space
— set of all possible outcomes of a trial (e.g., {1, 2, 3, 4, 5, 6} in the case of rolling a dice).

If the outcome of an experiment is A, then the complement of A is written A – ‘not A’, the set of all
other outcomes. The sample space is {A, A}. In this case we consider A as representing an event that
may be true or false, and we have a sample space {true, false}, or {1, 0}.

Symmetry

We would like to assign probabilities to events in sample space, such that equivalent (symmetric,
interchangeable) outcomes should be assigned the same probability (e.g., tossing a fair coin). And we
would like to constrain the total probability of all outcomes to be 1. If a sample space is composed of
N symmetric events (e.g., rolling a fair dice), then the probability of each event in the sample space
should be 1/N.

Independence

Two events A and B are independent if the outcome of A does not influence the outcome of B (and
vice-versa). The sample space of two independent events is their Cartesian Product.

5.2.2 Boxes example (Bishop, 2006)

We have two boxes, 1 red and 1 green. In the red box we have 2 apples and 6 oranges. In the green
box we have 3 apples and 1 orange. Suppose we randomly choose a box, and from the chosen box we
randomly choose a piece of fruit. We choose the red box 40% of the time, and the green box 60% of
the time.

In this example we have two random variables:

• B the identity of the box, which can take two values r (red) or g (green)

• F the type of fruit, with two possible values a (apple) and o (orange)

We can define the probability of an event as the fraction of times that event occurs (as N → ∞). We
can write the probability of selecting the red box as P(B=r) = 4/10, and the probability of selecting
the green box as P(B=g) = 6/10. We only have two boxes and we must choose one of them (B can
only take values r or g), so

P(B=r) + P(B=g) = 1.

We’ll come back to this example.

4



Note 5 Informatics 2B - Learning

5.2.3 Joint and Conditional Probability

Assume we have two random variables X and Y . X can take one of I values x1, . . . , xi, . . . , xI and Y
can take one of J values y1, . . . , y j, . . . , yJ. Consider N trials where we sample the values of X and Y ,
and let ni j be the number of times X = xi and Y = y j. If we consider the limit N → ∞, then we can
define the joint probability that X has value xi and Y has value y j as:

P(X= xi,Y=y j) =
ni j

N
.

Sometimes, to avoid clutter, we write P(xi, y j). The ordering of the terms is irrelevant here: P(X =
xi,Y=y j) = P(Y=y j, X= xi).

Let ni be the number of times X= xi, irrespective of the value of Y . Then we can write:

P(X= xi) =
ni

N
,

which can also be abbreviated as P(xi). From the definition of ni,

ni =

J∑

j=1

ni j .

Therefore we can write

P(X= xi) =
J∑

j=1

P(X= xi,Y=y j) , (5.1)

which is called the law of total probability or the sum rule.

The conditional probability P(X= xi | Y = y j), read as the probability that X= xi given that Y = y j, is
obtained by only considering events when Y=y j, and is the proportion of the time when X= xi in that
case:

P(X= xi | Y=y j) =
ni j

n j
.

Now, since
ni j

N
=

ni j

n j

n j

N
,

we may write the product rule which relates the joint probability to the conditional probability:

P(X= xi,Y=y j) = P(X= xi | Y=y j) P(Y=y j) . (5.2)

If we want to write the distribution for an arbitrary value of the random variable X we can write P(X).
Using this more compact notation we can write the sum and product rules as:

P(X) =
∑

Y

P(X,Y) (5.3)

P(X,Y) = P(X |Y) P(Y) = P(Y |X) P(X) . (5.4)

You can read P(X,Y) as ‘the probability of X and Y’, read P(Y |X) as ‘the probability of Y given X’,
and read P(X) as ‘the probability of X’.

∑
Y refers to the sum over all values that Y can take.

5

Note 5 Informatics 2B - Learning

5.2.4 Bayes’ Theorem

Re-expressing Equation (5.4), we can write:

P(Y |X) =
P(X |Y) P(Y)

P(X)
. (5.5)

This is known as Bayes’ Theorem. It is extremely useful for computing P(Y |X) when P(X |Y) is known.
Bayes’ theorem and the law of total probability are at the centre of statistical pattern recognition and
machine learning.

Using the law of total probability (sum rule) we can expand the denominator as:

P(X) =
∑

Y

P(X |Y) P(Y) ,

and we can write Bayes’ theorem as

P(Y |X) =
P(X |Y) P(Y)∑
Y P(X |Y) P(Y)

. (5.6)

5.2.5 Boxes example continued

In this example we had:

P(B=r) = 4/10
P(B=g) = 6/10 .

The probability of picking an apple from the red box (conditional probability of picking an apple given
that red box was chosen) is the fraction of apples in the red box (1/4) and is written as P(F=a | B=r).
We can write the set of conditional probabilities of picking a type of fruit given a box:

P(F=a | B=r) = 1/4
P(F=o | B=r) = 3/4
P(F=a | B=g) = 3/4
P(F=o | B=g) = 1/4 .

As a check, we can verify that each conditional distribution is normalised:
P(F=a | B=r) + P(F=o | B=r) = 1 and P(F=a | B=g) + P(F=o | B=g) = 1.

We can use the law of total probability to evaluate the overall probability of choosing an apple:

P(F=a) = P(F=a | B=r) P(B=r) + P(F=a | B=g) P(B=g)
= 1/4 · 4/10 + 3/4 · 6/10
= 22/40 = 11/20 .

And the probability of choosing an orange is:

P(F=o) = 1 − P(F=a) = 9/20 .

Now suppose we are told that an apple was chosen, but we don’t know which box it came from. We
can use Bayes’ theorem to evaluate the conditional probability that the red box was chosen, given that

6



Note 5 Informatics 2B - Learning

an apple was picked:

P(B=r | F=a) =
P(F=a | B=r) P(B=r)

P(F=a)

=
1/4 · 4/10

11/20
= 2/11 .

So, the probability that red box was chosen given that an apple was picked is 2/11, and

P(B=g | F=a) = 1 − P(B=r | F=a) = 1 − 2/11 = 9/11 ,

the probability that green box was chosen given that an apple was picked is 9/11.

We can interpret Bayes’ theorem as follows. Without having picked any fruit, the best information we
have about the probabilities of the two boxes are given by the prior probabilities P(B). Once we have
picked a fruit, then we have some additional information and we can use Bayes’ theorem to compute
the posterior probabilities P(B |F). Without having observed any fruit, the probability of choosing
the green box is 6/10. If an apple is observed we can incorporate this information, finding that the
posterior probability is 9/11. Observing the apple makes it more probable that the box we selected was
the green one.

5.3 Bayes’ Theorem and Pattern Classification

Bayes’ theorem is at the heart of statistical pattern recognition. Let’s look at how, in general terms, we
can express a pattern classification problem using Bayes’ theorem.

Consider a pattern classification problem in which there are K classes. Let C denote the class, taking
values 1, . . . ,K. The observed input data, which is a D-dimensional feature vector, is denoted by X.
Once the training set is used to train the classifier, a new, unlabelled data point x is observed. To make
a classification we could compute the posterior probabilities (also called a posteriori probabilities)
P(C=k |X=x), for every class k = 1, . . . ,K; we can then classify x by assigning it to the class with the
highest posterior probability, kmax. We can write this operation as:

kmax = arg max
k ∈ {1,...,K}

P(C=k |X=x) . (5.7)

This procedure is sometimes called MAP (maximum a posteriori) decision rule. The max operator
returns a probability that is the maximum value of P(C= k |X=x) over all values of C; the arg max
operator returns the argument (the value of kmax) corresponding to the maximum probability. More
compactly, we can write P(C=k |X=x) as P(Ck |x).2

MAP classification of x requires estimates of the conditional probability of each class, k, given x. We
can re-express the required conditional probabilities using Bayes’ theorem:

P(Ck |x) =
P(x |Ck) P(Ck)

P(x)
. (5.8)

We have expressed the posterior probability P(Ck |x) as a product of:

2We will simply use Ck to denote C = k for the ease of readability.

7

Note 5 Informatics 2B - Learning

• the likelihood3 of the class k, P(x |Ck), given data x ;
• the prior probability, P(Ck), of the class k.

There is also the denominator, P(x), to consider. We can compute this term using the law of total
probability:

P(x) =
∑

ℓ

P(x |Cℓ) P(Cℓ) .

However, because P(x) is the same for all classes, we do not need to consider it when finding the most
probable class, so that P(Ck |x) is proportional to P(x |Ck) P(Ck), i.e.

P(Ck |x) ∝ P(x |Ck) P(Ck) . (5.9)

If we return to the fish example, we can see why re-expressing the posterior probability using Bayes’
theorem is a useful thing to do.

5.4 Fish example redux

We have 200 examples of fish lengths, 100 male and 100 female. Let class C =M represent male,
and C=F represent female. Remember that we are assuming fish come in integer lengths—or, more
realistically, if a fish has a length between 9.5 and 10.5, then X = 10. Let the number of male and
female fish from with length x be given by nM(x) and nF(x), and the total number of fish in each class
k are denoted NM and NF . These counts are given in table 5.1 for our example dataset.

We can estimate the likelihoods P(x |M) and P(x |F) as the counts in each class for length x divided by
the total number of examples in that class:

P(x |M) ≈ nM(x)
NM

P(x |F) ≈ nF(x)
NF
.

To estimate these likelihoods, we consider the fish in each class separately (probability estimates are
conditional on the class). We obtain estimates of P(x |M) and P(x |F) (and NOT estimates of P(M | x)
and P(F | x)). Thus we have estimated the likelihoods of the length given each class using relative
frequencies (using the training set of 100 examples from each class). These are also tabulated in table
5.1. (These are probability estimates since NM and NF are finite, which is always the case for the real
world.)

We can use Bayes’ theorem to estimate the posterior probabilities of each class given the data:

P(M | x) =
P(x |M) P(M)

P(x)
∝ P(x |M) P(M)

P(F | x) =
P(x |F) P(F)

P(x)
∝ P(x |F) P(F) .

3In common English usage, ‘likelihood’ is more-or-less a synonym for probability, perhaps with extra connotations of
an event being hypothetical. In technical statistical usage, the likelihood is a property of an explanation of some data: a
model or its parameters. The posterior probability of a parameter, model, or class, is proportional to its prior multiplied by
its likelihood. Therefore saying ‘likelihood of the data’, while commonly-seen and acceptable informal English, conflicts
with the ‘correct’ statistical usage: ‘likelihood of the model (given the data)’.

8



Note 5 Informatics 2B - Learning

x nM(x) P(x |M) nF(x) P(x |F)

1 0 0.00 0 0.00
2 0 0.00 0 0.00
3 0 0.00 0 0.00
4 0 0.00 2 0.02
5 1 0.01 7 0.07
6 2 0.02 8 0.08
7 2 0.02 10 0.10
8 2 0.02 14 0.14
9 7 0.07 21 0.21

10 8 0.08 19 0.19
11 14 0.14 10 0.10
12 22 0.22 4 0.04
13 19 0.19 2 0.02
14 11 0.11 1 0.01
15 6 0.06 1 0.01
16 2 0.02 1 0.01
17 2 0.02 0 0.00
18 1 0.01 0 0.00
19 1 0.01 0 0.00
20 0 0.00 0 0.00

Table 5.1: Example fish lengths for male and female, tabulated showing counts of each length per class,
and relative frequencies used to estimate likelihoods for each class. (NB: These are different from the
example data shown in section 5.1.)

9

Note 5 Informatics 2B - Learning

In the case of this two-class problem:

P(x) = P(x |M) P(M) + P(x |F) P(F)
P(M) + P(F) = 1

P(M | x) + P(F | x) = 1 .

If we want to compare the posterior probabilities of M and F given the data we can take their ratio:

P(M | x)
P(F | x)

=
P(x |M) P(M)/P(x)
P(x |F) P(F)/P(x)

=
P(x |M) P(M)
P(x |F) P(F)

. (5.10)

In this case, if the ratio (Equation (5.10)) is greater than 1 then x is classified as M, if x is less than 1
then x is classified as F. As mentioned above, the denominator term P(x) cancels.

Let’s look at the same four test points as before. In this case let us assume that male and female fish
have equal prior probabilities, that is P(M) = P(F) = 1/2.

1. X = 5
P(M |X=5)
P(F |X=5)

=
P(X=5 |M) P(M)
P(X=5 |F) P(F)

=
0.01 · 0.5
0.07 · 0.5 = 1/7

Hence classify as X=5 as female (F).

2. X = 16
P(M |X=16)
P(F |X=16)

=
P(X=16 |M) P(M)
P(X=16 |F) P(F)

=
0.02 · 0.5
0.01 · 0.5 = 2

Hence classify as X=16 as male (M).

3. X = 9
P(M |X=9)
P(F |X=9)

=
P(X=9 |M) P(M)
P(X=9 |F) P(F)

=
0.07 · 0.5
0.21 · 0.5 = 1/3

Hence classify as X=9 as female (F).

4. X = 12
P(M |X=12)
P(F |X=12)

=
P(X=12 |M) P(M)
P(X=12 |F) P(F)

=
0.22 · 0.5
0.04 · 0.5 = 5.5

Hence classify as X=12 as male (M).

Equal prior probabilities mean that we are equally likely to find a male or a female fish. If we believe
that one sex is more prevalent than the other, then we can adjust the prior probability accordingly—and
Bayes’ theorem incorporates this information. Consider X=11; if the priors probabilities are equal
(0.5), then we classify that value as male (M) since

P(M |X=11)
P(F |X=11)

=
P(X=11 |M) P(M)
P(X=11 |F) P(F)

=
0.14 · 0.5
0.10 · 0.5 = 1.4

However, if we know there are twice as many females as males (i.e., P(M) = 1/3, P(F) = 2/3), then
the ratio becomes

P(M |X=11)
P(F |X=11)

=
P(X=11 |M) P(M)
P(X=11 |F) P(F)

=
0.14 · /3

0.10 · 2/3 = 0.7

and we classify the point as female (F).

10



Note 5 Informatics 2B - Learning

The values we have been using for P(x |M) and P(x |F) are estimates, based on the relative frequencies—
technically we refer to these as maximum likelihood estimates.4

Some questions. Assuming equal prior probabilities:

1. What is the value of P(M | X=4)?
2. What is the value of P(F | X=18)?
3. You observe data point X=20. To which class should it be assigned?

Comment on your answers, and any changes you might make to the probability estimates.

5.5 Optimisation problem

In section 5.3, we studied the basic idea of statistical pattern classification based on probabilities. To
make the framework work properly, the probabilities need to be estimated from the training data as
accurate as possible. To that end, we define a certain criterion to find what are supposed to be ‘best’.
This concept of optimality or optimisation plays an essential role in pattern recognition. For example,
we will study parameter estimation of Gaussian distributions in Chapter 8, and training of neural
networks in Chapters 11 and 12, both of which are defined as optimisation problems. We have already
seen two examples of optimisation problem in Chapter 3. One is the mean squared error function for
K-means clustering shown in Equation (3.1):

E =
1
N

K∑

k=1

N∑

n=1

znk‖xn −mk‖2 (5.11)

which we wanted to minimise with respect to the set of mean vectors {mk}K1 . This can be formulated as
the following optimisation problem:

min
{mk}K1

1
N

K∑

k=1

N∑

n=1

znk‖xn −mk‖2 . (5.12)

Recall that the K-means clustering is an algorithm to find a local minimum solution of the optimisation
problem. The second example is found in Equation (3.4), which is a formulation for PCA to find the
first two principal components, u and v, such that

max
u,v

Var (y) + Var (z)

subject to ‖u‖=1, ‖v‖=1,u ⊥ v .
(5.13)

Optimisation is a large field of study, which can be categorised in terms of types of variable (continuous
or discrete) and types of constraint (unconstrained or constrained). The two examples above both fall
into the category of continuous optimisation, but the former is a unconstrained optimisation problem,
whereas the latter is a constrained one. In this section, we only consider continuous and unconstrained
optimisation whose typical form 5 is given as

min
x

f (x) (5.14)

4There are more sophisticated ways to deal with a model’s unknown parameters, although these are beyond the scope
of this course. For example, fully Bayesian methods consider all possible values of the parameters, weighted by the
plausibility (posterior probability) of each setting.

5It does not matter whether we consider max or min, as max f (x) is equivalent to min− f (x).

11

Note 5 Informatics 2B - Learning

where x ∈ RD and f is a smooth function such that f : RD → R. The function f to be optimised is
called an objective function, and the solutions of the optimisation problem is called optimal solutions. It
is not generally possible to find analytic (closed-form) solutions, and iterative optimisation algorithms
are normally required as we have seen in the K-means clustering, but we here consider very simple
cases where closed forms exist.

It is easy to see that the optimal solutions satisfy the following condition:

∂ f (x)
∂xi

= 0, for i = 1, . . . ,D (5.15)

where ∂ f (x)
∂xi

denotes the partial derivative of f (x) with respect to the scalar variable xi. This can be
written in a vector form: (

∂ f (x)
∂x1
, . . . ,

∂ f (x)
∂xD

)T

= 0 (5.16)

where 0 = (0, . . . , 0)T is a zero vector in a D-dimensional vector space. The left hand side of this
equation is called a gradient or a gradient vector of f (x) and often denoted as ∇ f (x) or grad f (x). Note
that the condition above (i.e. ∇ f (x) = 0) is not generally a sufficient condition for optimal solutions,
but a necessary condition. However, the examples shown below consider a rather simple and specific
case of quadratic functions in which the condition is sufficient to find optimal solutions.

5.5.1 Optimisation of a quadratic function of one variable

A simple yet meaningful example of optimisation problem would be the minimisation of the following
quadratic function of a scalar variable x:

f (x) = ax2 + bx + c (5.17)

where a > 0, and b, c are arbitrary constants. By rewriting it into

ax2 + bx + c = a
(
x +

b
2a

)2

− b2

4a
+ c (5.18)

we can easily see that the solution is x = − b
2a . This can be also confirmed by using the necessary

condition shown Equation (5.15) to get

d f (x)
dx
= 2ax + b = 0 (5.19)

which gives the same solution.

5.5.2 Optimisation of a quadratic function of two variables

We now consider the following function g of two variables, x and y :

g(x, y) = ax2 + by2 + cxy + dx + ey + f (5.20)

where, for simplicity’s sake, we assume a > 0, b > 0, c2 < 4ab, and d, e, f are arbitrary constants.
Taking partial derivatives with respect to x and y yields

∂g
∂x
= 2ax + cy + d = 0 (5.21)

∂g
∂y
= 2by + cx + e = 0 . (5.22)

12



Note 5 Informatics 2B - Learning

To find the optimal solution (x, y), we rewrite the above into a system of linear equations in matrix
form: (

2a c
c 2b

) (
x
y

)
=

( −d
−e

)
. (5.23)

Thus
(

x
y

)
=

(
2a c
c 2b

)−1 ( −d
−e

)
(5.24)

=
1

4ab − c2

( −2bd + ce
cd − 2ae

)
. (5.25)

Question: Extend the above example to a quadratic function of three variables, x, y, and z. How about
a case of n variables?

5.5.3 Line of best fit (Least squares fitting line)

Consider a set of N observations {pn}N1 in a 2D space, where pn = (xn, yn)T , for which we would like to
find the best fit line y = ax + b, where a and b are the parameters of the line.6 As an objective function,
we can consider the mean squared error between the predicted value ŷi from xi and the actual value yi,
so that the objective function E is given as:

E =
1
N

N∑

n=1

(ŷn − yn)2 (5.26)

where
ŷn = axn + b . (5.27)

Thus, the optimisation problem is defined as mina,b E, i.e.,

min
a,b

1
N

N∑

n=1

(ŷn − yn)2 . (5.28)

Note that, as opposed to previous examples, this objective function E is not a function of x, but a
function of a and b.

To solve the problem, we at first rewrite E by substituting Equation (5.27) into Equation (5.26).

E =
1
N

N∑

n=1

(axn + b − yn)2 . (5.29)

The partial derivations of E with respect to a and b are given as

∂E
∂a
=

2
N

N∑

n=1

(axn + b − yn)xn =
2
N

a
N∑

n=1

x2
n + b

N∑

n=1

xn −
N∑

n=1

xnyn

 (5.30)

∂E
∂b
=

2
N

N∑

n=1

(axn + b − yn) =
2
N

a
N∑

n=1

xn + b
N∑

n=1

1 −
N∑

n=1

yn

 . (5.31)

6This is regarded as a regression line on y with x, whereas we can also consider a regression line on x with y, which is
defined as x = cy + d.

13

Note 5 Informatics 2B - Learning

By making the both partial derivatives, ∂E
∂b and ∂E

∂b , equal to zero, and ignoring irrelevant coefficients,
we get a system of linear equations in a and b:

a
N∑

n=1

x2
n + b

N∑

n=1

xn =

N∑

n=1

xnyn (5.32)

a
N∑

n=1

xn + b
N∑

n=1

1 =
N∑

n=1

yn . (5.33)

In matrix form,


∑N
n=1 x2

n
∑N

n=1 xn∑N
n=1 xn

∑N
n=1 1




a

b

 =


∑N
n=1 xnyn∑N

n=1 yn

 . (5.34)

So, the solution of the optimisation problem is given as


a

b

 =


∑N
n=1 x2

n
∑N

n=1 xn∑N
n=1 xn

∑N
n=1 1



−1 
∑N

n=1 xnyn∑N
n=1 yn

 (5.35)

=
1

N
∑N

n=1 x2
n − (

∑N
n=1 xn)2


N

∑N
n=1 xnyn − (

∑N
n=1 xn)(

∑N
n=1 yn)

−(
∑N

n=1 xn)(
∑N

n=1 xnyn) + (
∑N

n=1 x2
n)(

∑N
n=1 yn)

 . (5.36)

This can be simplified further, which is left as an exercise for the reader.

5.6 Summary

The main things covered in this chapter are:

• A simple example to demonstrate why we need to take uncertainty into account in pattern
recognition

• A review of some of the main probability concepts that we will need: Independence; Conditional
probability; The law of total probability; Bayes’ theorem.

• The application of Bayes’ theorem to statistical pattern recognition

• The basic idea of optimisation widely used in statistical pattern recognition

5.7 Reading

• Duda, Hart and Stork: Chapter 1, section 2.1

• Bishop: Sections 1.2.1, 1.2.2, 1.2.3

14



Note 5 Informatics 2B - Learning

Exercises

1. Let X,Y,Z and X1, X2, . . . , XN are random variables. Using the Bayes’ theorem for two random
variables, prove the following.

(a) P(X,Y,Z) = P(X|Y,Z)P(Y,Z)

(b) P(X,Y |Z) =
P(Y,Z|X)P(X)

P(Z)

(c) P(Z|X,Y) =
P(X|Y,Z)P(Z|Y)

P(X|Y)

(d) P(X1, X2, . . . , XN) = P(X1) P(X2|X1) P(X3|X2, X1) · · · P(XN |XN−1, . . . , X1)

2. For the data set shown in Table 5.1, without using software tools, plot P(x|F) and P(x|M) by
hand, and do the same for P(F|x) and P(M|x). (you may use a calculator if you want to)

3. In Section 5.5.3, we derived a formula for least squares fitting line, y = ax + b, which is also
called a regression line (on y with x). Now, we consider a regression line on x with y, i.e.,
x = cy + d. Derive a formula to find the parameters, c and d.

4. Consider the following set of four observations, {pn}41, where pn = (xn, yn)T .

p1 = (1, 3)T , p2 = (2, 0)T , p3 = (10, 7)T , p4 = (11, 4)T

(a) Find a regression line on y with x.

(b) Find a regression line on x with y.

15

Note 6 Informatics 2B - Learning

Naive Bayes

Hiroshi Shimodaira∗

January-March 2020

In the previous chapter we introduced the use of Bayes’ Theorem for pattern classification. For a test
vector x, we estimate the posterior probability P(Ck |x) for each class k. To classify x we choose the
class with the largest estimated posterior probability. To do this we re-express the posterior probabilities
using Bayes’ Theorem:

P(Ck |x) =
P(x |Ck) P(Ck)

P(x)

∝ P(x |Ck) P(Ck) .

Thus for each class we need to provide an estimate of the likelihood P(x |Ck) and the prior P(Ck).

To estimate the likelihood we need a statistical model which can provide a likelihood estimate. In the
‘fish’ example, the likelihood was estimated using a histogram for each class: the likelihood of a fish
with length x coming from class k was estimated as the relative frequency of fish of length x estimated
from the training data for class k.

Imagine if in addition to the length we also had some other information such as weight and circumfer-
ence. In this case, the input feature vector for each fish would contain 3 elements: (length, weight,
circumference). If we have 20 possible values for each feature, then the number of bins in a histogram
of these vectors would be 203=8000. In this case 100 examples per class would mean that it is not
possible to observe examples for the vast majority of the bins. We would need many more examples
to obtain reasonable estimates based on relative frequencies. As the number of feature dimensions
increases, the total number of possible feature vectors increases exponentially.

This severe difficulty that arises from moving to spaces of higher dimension was termed the curse of
dimensionality by Richard Bellman in the 1950s. This is a critical problem: it becomes impossible to
reliably estimate histograms once we have more than a few dimensions, even if we have millions of
examples.

In this chapter we shall look at an approach to the problem called the Naive Bayes approximation.
After showing how it works in a small, fictitious example, we’ll go on to see how this approach may be
applied to the problem of text classification, which uses high-dimensional feature vectors (e.g., 104- to
107-dimensional).

∗ c©2014-2020 University of Edinburgh. All rights reserved. This note is heavily based on notes inherited from Steve
Renals and Iain Murray.

1



Note 6 Informatics 2B - Learning

6.1 The Naive Bayes assumption

One way to deal with the curse of dimensionality is to assume that the different feature dimensions are
independent.1 If we are using histograms of relative frequencies to estimate likelihoods, then this means
that we construct, for each class, D 1-dimensional histograms, rather than a single D-dimensional
histogram. If we assume that each dimension can take M values, we now only need to estimate D × M
relative frequencies, rather than MD relative frequencies!

Consider a D-dimensional feature vector x= (x1, x2, . . . , xD). We write the probability of a data point x
given class k as a joint distribution of the D components of x (Equation (6.1)). We can re-express any
joint distribution as a product of conditional distributions using successive applications of the product
rule (Equation (6.2)). The result is known as the chain rule of probability, which in this case is:

P(x |Ck) = P(x1, x2, . . . , xD |Ck) (6.1)
= P(x1 | x2, . . . , xD,Ck) P(x2 | x3, . . . , xD,Ck) . . . P(xD−1 | xD,Ck) P(xD |Ck) . (6.2)

This decomposition in itself doesn’t address the curse of dimensionality, since the first term on the
right-hand side of Equation (6.2) is conditioned on (D−1) terms, the second on (D−2) terms, and so on.

However we can simplify things if we naively assume that the individual feature dimensions (x1, x2, . . . , xD)
are independent, that is:

P(x1 | x2, . . . , xD,Ck) = P(x1 |Ck)
P(x2 | x3, . . . , xD,Ck) = P(x2 |Ck)

...

This is called the Naive Bayes assumption. The assumption is drastic and rarely true: for example,
in the above case Naive Bayes states that the length of a male fish is independent of its weight and
circumference. However making this approximation allows us to have a much simpler form for the
likelihood, since Equation (6.2) is simplified to:

P(x |Ck) = P(x1 |Ck) P(x2 |Ck) . . . P(xD |Ck) =
D∏

d=1

P(xd |Ck) . (6.3)

We have approximated the probability of a D-dimensional feature vector as a product of D probabilities
of the 1-dimensional feature vectors.

Using this assumption, we can express Bayes’ theorem as follows:

P(Ck |x) =
P(x |Ck) P(Ck)

P(x)
(6.4)

=

∏D
d=1 P(xd |Ck) P(Ck)∏D

d=1 P(xd)
∝ P(Ck)

D∏

d=1

P(xd |Ck) (6.5)

6.2 Example

The following (fictitious) example comes from the book Data Mining by Witten and Frank.

1We normally assume that features are ‘conditionally independent’ – a relaxed version of independence, in which
features are mutually independent in the class.

2

Note 6 Informatics 2B - Learning

Consider a game which is played or not depending on the weather conditions: outlook (sunny / overcast
/ rainy), temperature (hot / mild / cool), humidity (high / normal) and windy (true / false). The input
variable is 4-dimensional, with 2 or 3 values per dimension. There are 36 possible combinations
(3 × 3 × 2 × 2).

We have an input training set of 14 examples, shown in Table 6.1. As is usually the case in machine
learning, there are fewer training examples than possible settings of the input variables; most possible
conditions are not directly observed. We can tabulate the data in terms of the frequencies for each of
the four input variables (Table 6.2), and in terms of the relative frequencies (Table 6.3). The relative
frequencies can be used as probability estimates, for example P(T =h | Play=Y) = 2/9.

Outlook Temperature Humidity Windy Play
sunny hot high false NO
sunny hot high true NO

overcast hot high false YES
rainy mild high false YES
rainy cool normal false YES
rainy cool normal true NO

overcast cool normal true YES
sunny mild high false NO
sunny cool normal false YES
rainy mild normal false YES
sunny mild normal true YES

overcast mild high true YES
overcast hot normal false YES

rainy mild high true NO

Table 6.1: Training data for the weather example

Outlook Y N

sunny 2 3
overcast 4 0
rainy 3 2

Temperature Y N

hot 2 2
mild 4 2
cool 3 1

Humidity Y N

high 3 4
normal 6 1

Windy Y N

false 6 2
true 3 3

Table 6.2: Play counts for different weather conditions.

Outlook Y N

sunny 2/9 3/5
overcast 4/9 0/5
rainy 3/9 2/5

Temperature Y N

hot 2/9 2/5
mild 4/9 2/5
cool 3/9 1/5

Humidity Y N

high 3/9 4/5
normal 6/9 1/5

Windy Y N

false 6/9 2/5
true 3/9 3/5

Table 6.3: Play relative frequencies for different weather conditions. There was play on 9/14 cases.

3



Note 6 Informatics 2B - Learning

We are given the following test example:

Outlook Temp. Humidity Windy Play

sunny cool high true ?

This example’s feature vector, x, was not observed in the training set. We can generalise from the other
examples by using Naive Bayes:

P(play=Y | x) ∝ P(play=Y) · P(O= s | play=Y) · P(T =c | play=Y)
· P(H=h | play=Y) · P(W= t | play=Y)

=
9

14
· 2

9
· 3

9
· 3

9
· 3

9
≈ 0.0053

P(play=N | x) ∝ P(play=N) · P(O= s | play=N) · P(T =c | play=N)
· P(H=h | play=N) · P(W= t | play=N)

=
5

14
· 3

5
· 1

5
· 4

5
· 3

5
≈ 0.0206

And the ratio of posterior probabilities is:

P(play=Y | x)
P(play=N | x)

=
0.0053
0.0206

≈ 0.26

Hence we classify x as play=N.

6.3 Conclusion

In this chapter we have introduced the Naive Bayes approximation. When we have a multidimensional
feature vector, Naive Bayes approximated the likelihoods by considering each feature dimension to be
independent:

P(x1, x2, . . . , xD |C) ≈ P(x1 |C) · P(x2 |C) · · · P(xD |C) ,

which approximates a D-dimensional distribution as D 1-dimensional distributions. If each dimension
can take M different values, we need only estimate M × D probabilities, rather than MD probabilities.

4

Note 6 Informatics 2B - Learning

Exercises

1. Considering the example shown in Section 6.2, predict how likely a game is played for each of
the following conditions:

(a) No weather conditions are known.

(b) Outlook = rainy.

(c) Outlook = rainy, Temperature = hot, Humidity = normal, and Windy = false.

5



Note 7 Informatics 2B - Learning

Text Classification using Naive Bayes

Hiroshi Shimodaira∗

January-March 2020

Text classification is the task of classifying documents by their content: that is, by the words of which
they are comprised. Perhaps the best-known current text classification problem is email spam filtering:
classifying email messages into spam and non-spam (ham).

7.1 Document models

Text classifiers often don’t use any kind of deep representation about language: often a document is
represented as a bag of words. (A bag is like a set that allows repeating elements.) This is an extremely
simple representation: it only knows which words are included in the document (and how many times
each word occurs), and throws away the word order!

Consider a documentD, whose class is given by C. In the case of email spam filtering there are two
classes C = S (spam) and C =H (ham). We classify D as the class which has the highest posterior
probability P(C |D), which can be re-expressed using Bayes’ Theorem:

P(C |D) =
P(D|C) P(C)

P(D)
∝ P(D|C) P(C) . (7.1)

We shall look at two probabilistic models of documents, both of which represent documents as a bag
of words, using the Naive Bayes assumption. Both models represent documents using feature vectors
whose components correspond to word types. If we have a vocabulary V , containing |V | word types,
then the feature vector dimension D= |V |.

Bernoulli document model: a document is represented by a feature vector with binary elements
taking value 1 if the corresponding word is present in the document and 0 if the word is not
present.

Multinomial document model: a document is represented by a feature vector with integer elements
whose value is the frequency of that word in the document.

Example: Consider the vocabulary:

V = {blue, red, dog, cat, biscuit, apple} .

In this case |V |=D=6. Now consider the (short) document “the blue dog ate a blue biscuit”. If dB

is the Bernoulli feature vector for this document, and dM is the multinomial feature vector, then we
∗ c©2014-2020 University of Edinburgh. All rights reserved. This note is heavily based on notes inherited from Steve

Renals and Iain Murray.

1

Note 7 Informatics 2B - Learning

would have:

dB = (1, 0, 1, 0, 1, 0)T

dM = (2, 0, 1, 0, 1, 0)T

To classify a document we use Equation (7.1), which requires estimating the likelihoods of the
document given the class, P(D|C) and the class prior probabilities P(C). To estimate the likelihood,
P(D|C), we use the Naive Bayes assumption applied to whichever of the two document models we
are using.

7.2 The Bernoulli document model

As mentioned above, in the Bernoulli model a document is represented by a binary vector, which
represents a point in the space of words. If we have a vocabulary V containing a set of |V | words, then
the t’th element of a document vector corresponds to word wt in the vocabulary. Let b be the feature
vector for the document D ; then the t’th element of b, written bt, is either 0 or 1 representing the
absence or presence of word wt in the document.

Let P(wt |Ck) be the probability of word wt occurring in a document of class k; the probability of wt not
occurring in a document of this class is given by (1−P(wt |Ck)). If we make the naive Bayes assumption,
that the probability of each word occurring in the document is independent of the occurrences of the
other words, then we can write the document likelihood P(D | C) in terms of the individual word
likelihoods P(wt |Ck):

P(D|Ck) = P(b |Ck) =
|V |∏

t=1

[bt P(wt |Ck) + (1−bt) (1−P(wt |Ck))] . (7.2)

This product goes over all words in the vocabulary. If word wt is present, then bt = 1 and the
required probability is P(wt |Ck); if word wt is not present, then bt = 0 and the required probability
is 1 − P(wt |Ck). We can imagine this as a model for generating document feature vectors of class k,
in which the document feature vector is modelled as a collection of |V | weighted coin tosses, the t th
having a probability of success equal to P(wt |Ck).

The parameters of the likelihoods are the probabilities of each word given the document class P(wt |Ck);
the model is also parameterised by the prior probabilities, P(Ck). We can learn (estimate) these
parameters from a training set of documents labelled with class k. Let nk(wt) be the number of
documents of class k in which wt is observed; and let Nk be the total number of documents of that class.
Then we can estimate the parameters of the word likelihoods as:1

P̂(wt | Ck) =
nk(wt)

Nk
, (7.3)

the relative frequency of documents of class k that contain word wt. If there are N documents in total
in the training set, then the prior probability of class k may be estimated as the relative frequency of
documents of class k:

P̂(Ck) =
Nk

N
. (7.4)

Thus given a training set of documents (each labelled with a class), and a set of K classes, we can
estimate a Bernoulli text classification model as follows:

1We sometimes use P̂( ) to explicitly denote the estimated probability as opposed to the (theoretical) true one, P( ).

2



Note 7 Informatics 2B - Learning

1. Define the vocabulary V; the number of words in the vocabulary defines the dimension of the
feature vectors

2. Count the following in the training set:

• N the total number of documents

• Nk the number of documents labelled with class k, for k=1, . . . ,K

• nk(wt) the number of documents of class k containing word wt for k=1, . . . ,K, t=1, . . . , |V |

3. Estimate the likelihoods P(wt | Ck) using Equation (7.3)

4. Estimate the priors P(Ck) using Equation (7.4)

To classify an unlabelled documentD, we estimate the posterior probability for each class k combining
Equation (7.1) and Equation (7.2):

P(Ck |b) ∝ P(b |Ck) P(Ck)

∝ P(Ck)
|V |∏

t=1

[bt P(wt |Ck) + (1−bt) (1−P(wt |Ck))] . (7.5)

Example

Consider a set of documents, each of which is related either to Sports (S ) or to Informatics (I). Given
a training set of 11 documents, we would like to estimate a Naive Bayes classifier, using the Bernoulli
document model, to classify unlabelled documents as S or I.

We define a vocabulary of eight words:

V =



w1 = goal,
w2 = tutor,

w3 = variance,
w4 = speed,
w5 = drink,

w6 = defence,
w7 = performance,

w8 = field



Thus each document is represented as an 8-dimensional binary vector.

The training data is presented below as a matrix for each class, in which each row represents an
8-dimensional document vector

BSport =



1 0 0 0 1 1 1 1
0 0 1 0 1 1 0 0
0 1 0 1 0 1 1 0
1 0 0 1 0 1 0 1
1 0 0 0 1 0 1 1
0 0 1 1 0 0 1 1



3

Note 7 Informatics 2B - Learning

BInf =



0 1 1 0 0 0 1 0
1 1 0 1 0 0 1 1
0 1 1 0 0 1 0 0
0 0 0 0 0 0 0 0
0 0 1 0 1 0 1 0



Classify the following into Sports or Informatics using a Naive Bayes classifier.

1. b1 = (1, 0, 0, 1, 1, 1, 0, 1)T

2. b2 = (0, 1, 1, 0, 1, 0, 1, 0)T

Solution:

The total number of documents in the training set N=11; NS =6, NI=5.

Using Equation (7.4), we can estimate the prior probabilities from the training data as:

P̂(S ) =
6
11

; P̂(I) =
5

11

The document count nk(w) in the training data set, and estimated word likelihoods using Equation (7.3)
are given as:

nS (w) P̂(w |S ) nI(w) P̂(w | I)

w1 3 3/6 1 1/5
w2 1 1/6 3 4/5
w3 2 2/6 3 3/5
w4 3 3/6 1 1/5
w5 3 3/6 1 1/5
w6 4 4/6 1 2/5
w7 4 4/6 3 3/5
w8 4 4/6 1 1/5

We use Equation (7.5) to compute the posterior probabilities of the two test vectors and hence classify
them.

1. b1 = (1, 0, 0, 1, 1, 1, 0, 1)T

P̂(S |b1) ∝ P̂(S )
8∏

t=1

[
b1tP̂(wt |S ) + (1 − b1t)(1 − P̂(wt |S ))

]

∝ 6
11

(
1
2
× 5

6
× 2

3
× 1

2
× 1

2
× 2

3
× 1

3
× 2

3

)
=

5
891

≈ 5.6 × 10−3

P̂(I |b1) ∝ P̂(I)
8∏

t=1

[
b1tP̂(wt | I) + (1 − b1t)(1 − P̂(wt | I))

]

∝ 5
11

(
1
5
× 2

5
× 2

5
× 1

5
× 1

5
× 1

5
× 2

5
× 1

5

)
=

8
859375

≈ 9.3 × 10−6

Classify this document as S .

4



Note 7 Informatics 2B - Learning

2. b2 = (0, 1, 1, 0, 1, 0, 1, 0)T

P̂(S |b2) ∝ P̂(S )
8∏

t=1

[
b2tP̂(wt |S ) + (1 − b2t)(1 − P̂(wt |S ))

]

∝ 6
11

(
1
2
× 1

6
× 1

3
× 1

2
× 1

2
× 1

3
× 2

3
× 1

3

)
=

12
42768

≈ 2.8 × 10−4

P̂(I |b1) ∝ P̂(I)
8∏

t=1

[
b1tP̂(wt | I) + (1 − b1t)(1 − P̂(wt | I))

]

∝ 5
11

(
4
5
× 3

5
× 3

5
× 4

5
× 1

5
× 4

5
× 3

5
× 4

5

)
=

34560
4296875

≈ 8.0 × 10−3

Classify as I.

7.3 The multinomial distribution (NE)

Before discussing the multinomial document model, it is important to be familiar with the multinomial
distribution.

We first need to be able to count the number of distinct arrangements of a set of items, when some of
the items are indistinguishable. For example: Using all the letters, how many distinct sequences can
you make from the word ‘Mississippi’? There are 11 letters to permute, but ‘i’ and ‘s’ occur four times
and ‘p’ twice. If these letters were distinct (e.g., if they were labelled i1, i2, etc.) then there would be
11! permutations. However of these permutations there are 4! that are the same if the subscripts are
removed from the ‘i’ s. This means that we can reduce the size of the total sample space by a factor of
4! to take account of the four occurrences of ‘i’. Likewise there is a factor of 4! for ‘s’ and a factor of
2! for ‘p’ (and a factor of 1! for ‘m’). This gives the total number distinct permutations as:

11!
4! 4! 2! 1!

= 34650

Generally if we have n items of D types, with n1 of type 1, n2 of type 2 and nD of type D (such that
n1 + n2 + . . . + nD = n), then the number of distinct permutations is given by:

n!
n1! n2! . . . nD!

These numbers are called the multinomial coefficients.

Now suppose a population contains items of D ≥ 2 different types and that the proportion of items that
are of type t is pt (t=1, . . . ,D), with

D∑

t=1

pt = 1 pt > 0, for all t.

Suppose n items are drawn at random (with replacement) and let xt denote the number of items of
type t. The vector x= (x1, . . . , xD)T has a multinomial distribution with parameters n and p1, . . . , pD,
defined by:

P(x) =
n!

x1! x2! . . . xD!
px1

1 px2
2 . . . p

xD
D

=
n!

∏D
t=1 xt!

D∏

t=1

pxt
t . (7.6)

5

Note 7 Informatics 2B - Learning

The
∏D

t=1 pxt
t product gives the probability of one sequence of outcomes with counts x. The multinomial

coefficient, counts the number of such sequences that there are.

7.4 The multinomial document model

In the multinomial document model, the document feature vectors capture the frequency of words, not
just their presence or absence. Let x be the multinomial model feature vector for documentD. The
t’th element of x, written xt, is the count of the number of times word wt occurs in documentD. Let
n=

∑
t xt be the total number of words in documentD.

Let P(wt |Ck) again be the probability of word wt occurring in class k, this time estimated using the word
frequency information from the document feature vectors. We again make the naive Bayes assumption,
that the probability of each word occurring in the document is independent of the occurrences of
the other words. We can then write the document likelihood P(D|Ck) as a multinomial distribution
(Equation (7.6)), where the number of draws corresponds to the length of the document, and the
proportion of drawing item t is the probability of word type t occurring in a document of class k,
P(wt |Ck).

P(D|C) = P(x |Ck) =
n!

∏|V |
t=1 xt!

|V |∏

t=1

P(wt |Ck)xt

∝
|V |∏

t=1

P(wt |Ck)xt . (7.7)

We often won’t need the normalisation term (n!/
∏

t xt!), because it does not depend on the class k.
The numerator of the right hand side of this expression can be interpreted as the product of word
likelihoods for each word in the document, with repeated words taking part for each repetition.

As for the multinomial model, the parameters of the likelihood are the probabilities of each word given
the document class P(wt |Ck), and the model parameters also include the prior probabilities P(Ck). To
estimate these parameters from a training set of documents, {D1,D2, . . . ,DN}, let zik be an indicator
variable which equals 1 when Di belongs to class k, and equals 0 otherwise. If N is again the total
number of documents, then we have:

P̂(wt | Ck) =
∑N

i=1 xit zik∑|V |
s=1

∑N
i=1 xis zik

(7.8)

=
nk(wt)∑|V |

s=1 nk(ws)
, (7.9)

an estimate of the probability P(wt | Ck) as the relative frequency of wt in documents of class k with
respect to the total number of words in documents of that class, where nk(wt) =

∑N
i=1 xit zik.2

The prior probability of class k is estimated as before (Equation (7.4).

Thus given a training set of documents (each labelled with a class) and a set of K classes, we can
estimate a multinomial text classification model as follows:

2We previously used the same variable nk(wt) in Equation (7.3) for Bernoulli model to denote the number of documents
of class k containing word wt, whereas it now represents the frequency of word wt in the documents of class k. You should
now understand Equation (7.9) is more general than Equation (7.3). The actual difference lies in the fact that the two
document models employ different types of feature vector - Bernoulli feature vector and multinomial feature vector.

6



Note 7 Informatics 2B - Learning

1. Define the vocabulary V; the number of words in the vocabulary defines the dimension of the
feature vectors.

2. Count the following in the training set:

• N : the total number of documents

• Nk : the number of documents labelled with class k, for each class k=1, . . . ,K

• xit : the frequency of word wt in documentDi, computed for every word wt in V
(Alternatively, nk(wt) : the frequency of word wt in the documents of class k)

3. Estimate the likelihoods P(wt | Ck) using Equation (7.8) or Equation (7.9).

4. Estimate the priors P(Ck) using Equation (7.4).

To classify an unlabelled documentD, we estimate the posterior probability for each class combining
(Equation (7.1) and (Equation (7.7)):

P(Ck |D) = P(Ck |x)
∝ P(x |Ck) P(Ck)

∝ P(Ck)
|V |∏

t=1

P(wt |Ck)xt . (7.10)

Unlike the Bernoulli model, words that do not occur in the document (i.e., for which xt =0) do not
affect the probability (since p0=1).

Note that we can rewrite the posterior probability in terms of words u which occur in the document:

P(Ck |D) ∝ P(Ck)
len(D)∏

j=1

P(u j |Ck) (7.11)

where u j is the j ’th word in document D. This form will be preferable to the original one in some
applications, which you will see in the following example.

Example

Consider the same example in Section 7.2, except that this time we will use the multinomial model
instead of Bernoulli model.

Each documentDi is now represented as an 8-dimensional row vector mi ; element mit is the frequency
of word wt in documentDi.

The training data is presented below as a matrix for each class, in which each row represents an
8-dimensional document vector.

MSport =



2 0 0 0 1 2 3 1
0 0 1 0 2 1 0 0
0 1 0 1 0 2 1 0
1 0 0 2 0 1 0 1
2 0 0 0 1 0 1 3
0 0 1 2 0 0 2 1



7

Note 7 Informatics 2B - Learning

MInf =



0 1 1 0 0 0 1 0
1 2 0 1 0 0 1 1
0 1 1 0 0 2 0 0
0 0 0 0 0 0 0 0
0 0 1 0 1 0 1 0



Classify the following test documents into Sports or Informatics.

1. D1 = w5 w1 w6 w8 w1 w2 w6

2. D2 = w3 w5 w2 w7

Solution:

Let nk(w) be the frequency of word w in all documents of class k, giving likelihood estimate,

P̂(w |S ) =
nS (w)∑
v∈V nS (v)

, P̂(w | I) =
nI(w)∑
v∈V nI(v)

,

nS (w) P̂(w |S ) nI(w) P̂(w | I)

w1 5 5/36 1 1/16
w2 1 1/36 4 4/16
w3 2 2/36 3 3/16
w4 5 5/36 1 1/16
w5 4 4/36 1 1/16
w6 6 6/36 2 2/16
w7 7 7/36 3 3/16
w8 6 6/36 1 1/16

We have now estimated the model parameters.

1. D1 = w5 w1 w6 w8 w1 w2 w6

P̂(D1 |S ) = P̂(w5 |S ) · P̂(w1 |S ) · P̂(w6 |S ) · P̂(w8 |S ) · P̂(w1 |S ) · P̂(w2 |S ) · P̂(w6 |S )

=
4
36
× 5

36
× 6

36
× 6

36
× 5

36
× 1

36
× 6

36
=

4 × 52 × 63

367 ≈ 2.76 × 10−7

P̂(S |D1) ∝ P̂(S ) P̂(D1 |S ) =
6

11
· 4 × 52 × 63

367 ≈ 1.50 × 10−7

P̂(D1 | I) = P̂(w5 | I) · P̂(w1 | I) · P̂(w6 | I) · P̂(w8 | I) · P̂(w1 | I) · P̂(w2 | I) · P̂(w6 | I)

=
1
16
× 1

16
× 2

16
× 1

16
× 1

16
× 4

16
× 2

16
=

24

167 ≈ 5.96 × 10−7

P̂(I |D1) ∝ P̂(I) P̂(D1 | I) =
5

11
· 24

166 ≈ 2.71 × 10−8

P̂(S |D1) > P̂(I |D1), thus we classifyD1 as S .

8



Note 7 Informatics 2B - Learning

We have not normalised by P̂(D1), hence the above are joint probabilities, proportional to the
posterior probability. To obtain the posterior:

P̂(S |D1) =
P̂(S ) P̂(D1 |S )

P̂(S ) P̂(D1 |S ) + P̂(I) P̂(D1 | I)
=

1.50 × 10−7

1.50 × 10−7 + 2.71 × 10−8 ≈ 0.847

P̂(I |D1) = 1 − P̂(S |D1) ≈ 0.153

2. D2 = w3 w5 w2 w7

P̂(D2 |S ) = P̂(w3 |S ) · P̂(w5 |S ) · P̂(w2 |S ) · P̂(w7 |S )

=
2
36
× 4

36
× 1

36
× 7

36
=

23 × 7
364 ≈ 3.33 × 10−5

P̂(S |D2) ∝ P̂(S ) P̂(D2 |S ) =
6

11
· 23 · 7

364 ≈ 1.82 × 10−5

P̂(D2 | I) = P̂(w3 | I) · P̂(w5 | I) · P̂(w2 | I) · P̂(w7 | I)

=
3

16
× 1

16
× 4

16
× 3

16
=

32 · 4
164 ≈ 5.49 × 10−4

P̂(I |D2) ∝ P̂(I) P̂(D2 | I) =
5
11
· 32 · 4

164 ≈ 2.50 × 10−4

P̂(I |D2) > P̂(S |D2), thus we classifyD2 as I.

We have not normalised by P̂(D2), hence the above are joint probabilities, proportional to the
posterior probability. To obtain the posterior:

P̂(S |D2) =
P̂(S ) P̂(D2 |S )

P̂(S ) P̂(D2 |S ) + P̂(I) P̂(D2 | I)
=

1.82 × 10−5

1.82 × 10−5 + 2.50 × 10−4 ≈ 0.0679

P̂(I |D2) = 1 − P̂(S |D2) ≈ 0.932

7.5 The Zero Probability Problem

A drawback of relative frequency estimates—Equation (7.8) for the multinomial model—is that zero
counts result in estimates of zero probability. This is a bad thing because the Naive Bayes equation for
the likelihood (Equation (7.7)) involves taking a product of probabilities: if any one of the terms of
the product is zero, then the whole product is zero. This means that the probability of the document
belonging to the class in question is zero—which means it is impossible.

Just because a word does not occur in a document class in the training data does not mean that it cannot
occur in any document of that class.

The problem is that Equation (7.8) underestimates the likelihoods of words that do not occur in the
data. Even if word w is not observed for class k in the training set, we would still like P(w | Ck) > 0.
Since probabilities must sum to 1, if unobserved words have underestimated probabilities, then those
words that are observed must have overestimated probabilities. Therefore, one way to alleviate the

9

Note 7 Informatics 2B - Learning

problem is to remove a small amount of probability allocated to observed events and distribute this
across the unobserved events. A simple way to do this, sometimes called Laplace’s law of succession
or add-one smoothing, adds a count of one to each word type. If there are W word types in total, then
Equation (7.8) may be replaced with:

PLap(wt | Ck) =
1 +

∑N
i=1 xit zik

|V | +∑|V |
s=1

∑N
i=1 xis zik

=
1 + nk(wt)

|V | +∑|V |
s=1 nk(ws)

(7.12)

The denominator was increased to take account of the |V | extra ‘observations’ arising from the ‘add 1’
term, ensuring that the probabilities are still normalised.

7.6 Comparing the two models

The Bernoulli and the multinomial document models are both based on a bag of words. However there
are a number of differences, which we summarise here:

1. Underlying model of text:
Bernoulli: a document can be thought of as being generated from a multidimensional Bernoulli
distribution: the probability of a word being present can be thought of as a (weighted) coin flip
with probability P(wt |C).
Multinomial: a document is formed by drawing words from a multinomial distribution: you can
think of obtaining the next word in the document by rolling a (weighted) |V |-sided dice with
probabilities P(wt |C).

2. Document representation:
Bernoulli: binary vector, elements indicating presence or absence of a word.
Multinomial: integer vector, elements indicating frequency of occurrence of a word.

3. Multiple occurrences of words:
Bernoulli: ignored.
Multinomial: taken into account.

4. Behaviour with document length:
Bernoulli: best for short documents.
Multinomial: longer documents are OK.

5. Behaviour with ‘the’:
Bernoulli: since ‘the’ is present in almost every document, P(‘the’ |C) ≈ 1.0.
Multinomial: since probabilities are based on relative frequencies of word occurrence in a class,
P(‘the’ |C) ≈ 0.05.

7.7 Conclusion

In this chapter we have shown how the Naive Bayes approximation can be used for document
classification, by constructing distributions over words. The classifiers require a document model to
estimate P(document | class). We looked at two document models that we can use with the Naive
Bayes approximation:

• Bernoulli document model: a document is represented by a binary feature vector, whose
elements indicate absence or presence of corresponding word in the document.

10



Note 7 Informatics 2B - Learning

• Multinomial document model: a document is represented by an integer feature vector, whose
elements indicate frequency of corresponding word in the document.

Reference: Christopher D. Manning, Prabhakar Raghavan and Hinrich Schütze, Introduction to
Information Retrieval, Cambridge University Press. 2008. (Chapter 13 Text classification and Naive
Bayes) http://www-nlp.stanford.edu/IR-book/

11

Note 7 Informatics 2B - Learning

Exercises

1. Considering the same example in Section 7.4, classify a new test documentD = w7,w3,w2,w3,w4

when the multinomial document model is used. What if the Bernoulli document model is em-
ployed instead?

2. The Bernoulli document model can also suffer from the zero probability problem discussed in
Section 7.5. How would you apply add-one smoothing in this case?

12



Note 8 Informatics 2B - Learning

Gaussians

Hiroshi Shimodaira∗

January-March 2020

In this chapter we introduce the basics of how to build probabilistic models of continuous-valued data,
including the most important probability distribution for continuous data: the Gaussian, or Normal,
distribution. We discuss both the univariate Gaussian (the Gaussian distribution for one-dimensional
data) and the multivariate Gaussian distribution (the Gaussian distribution for multi-dimensional data).

8.1 Continuous random variables

First we review the concepts of the cumulative distribution function and the probability density function
of a continuous random variable.

Many events that we want to model probabilistically are described by real numbers rather than discrete
symbols or integers. In this case we must use continuous random variables. Some examples of
continuous random variables include:

• The sum of two numbers drawn randomly from the interval 0 < x < 1;

• The length of time for a bus to arrive at the bus-stop;

• The height of a member of a population.

8.1.1 Cumulative distribution function

We will develop the way we model continuous random variables using a simple example.

Consider waiting for a bus, which runs every 30 minutes. We shall make the idealistic assumption that
the buses are always exactly on time, thus a bus arrives every 30 minutes. If you are waiting for a bus,
but don’t know the timetable, then the precise length of time you need to wait is unknown. Let the
continuous random variable X denote the length of time you need to wait for a bus.

Given the above information we may assume that X never takes values above 30 or below 0. We can
write this as:

P(X < 0) = 0
P(0 ≤ X ≤ 30) = 1

P(X > 30) = 0

∗ c©2014-2020 University of Edinburgh. All rights reserved. This note is heavily based on notes inherited from Steve
Renals and Iain Murray.

1

Note 8 Informatics 2B - Learning

0 10 20 30 40

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

Cumulative Distribution Function

x

F
(x

)

Figure 8.1: Cumulative distribution function of random variable X in the ‘bus’ example.

The probability distribution function for a random variable assigns a probability to each value that the
variable may take. It is impossible to write down a probability distribution function for a continuous
random variable X, since P(X= x) = 0 for all x. This is because X is continuous and can take infinitely
many values (and 1/∞=0). However we can write down a cumulative distribution F(X), which gives
the probability of X taking a value that is less than or equal to x. For the current example:

F(x) = P(X ≤ x) =



0 x < 0
(x − 0)/30 = x/30 0 ≤ x ≤ 30
1 x > 30

(8.1)

In writing down this cumulative distribution, we have made the (reasonable) assumption that the
probability of a bus arriving increases in proportion to the interval of time waited (in the region 0–30
minutes). This cumulative density function is plotted in Figure 8.1.

Cumulative distribution functions have the following properties:

(i) F(−∞) = 0;

(ii) F(∞) = 1;

(iii) If a ≤ b then F(a) ≤ F(b).

To obtain the probability of falling in an interval we can do the following:

P(a < X ≤ b) = P(X ≤ b) − P(X ≤ a) = F(b) − F(a). (8.2)

2



Note 8 Informatics 2B - Learning

0 10 20 30 40

0
.0

0
0

0
.0

0
5

0
.0

1
0

0
.0

1
5

0
.0

2
0

0
.0

2
5

0
.0

3
0

Probability Density Function

x

p
(x

)

Figure 8.2: Probability density function of random variable X in the ‘bus’ example.

For the ‘bus’ example:

P(15 < X ≤ 21) = F(21) − F(15)
= 0.7 − 0.5 = 0.2

8.1.2 Probability density function

Although we cannot define a probability distribution function for a continuous random variable, we
can define a closely related function, called the probability density function (pdf), p(x):

p(x) =
d
dx

F(x) = F′(x)

F(x) =
∫ x

−∞
p(x) dx .

The pdf is the gradient of the cdf. Note that p(x) is not the probability that X has value x. However, the
pdf is proportional to the probability that X lies in a small interval centred on x. The pdf is the usual
way of describing the probabilities associated with a continuous random variable X. We usually write
probabilities using upper case P and probability densities using lower case p.

We can immediately write down the pdf for the ‘bus’ example:

p(x) =



0 x < 0
1/30 0 ≤ x ≤ 30
0 x > 30

Figure 8.2 shows a graph of this pdf. X is said to be uniform on the interval (0, 30).

3

Note 8 Informatics 2B - Learning

−8 −6 −4 −2 0 2 4 6 8
0

0.05

0.1

0.15

0.2

0.25

x

f(
x
)

Figure 8.3: P(−2 < X ≤ 2) is the shaded area under the pdf.

The probability that the random variable lies in interval (a, b) is the area under the pdf between a and b:

P(a < X ≤ b) = F(b) − F(a)

=

∫ b

−∞
p(x) dx −

∫ a

−∞
p(x) dx

=

∫ b

a
p(x) dx .

This integral is illustrated in Figure 8.3. The total area under the pdf equals 1, the probability that x
takes on some value between −∞ and∞. We can also confirm that F(∞) − F(−∞) = 1 − 0 = 1.

8.2 The Gaussian distribution

The Gaussian (or Normal) distribution is the most commonly encountered (and easily analysed)
continuous distribution. It is also a reasonable model for many situations (the famous ‘bell curve’).

If a (scalar) variable has a Gaussian distribution, then it has a probability density function with this
form:

p(x |µ, σ2) = N(x; µ, σ2) =
1√

2πσ2
exp

(−(x − µ)2

2σ2

)
. (8.3)

The Gaussian is described by two parameters:

• the mean µ (location)

• the variance σ2 (dispersion)

We write p(x |µ, σ2) because the pdf of x depends on the parameters. Sometimes (to slim down the
notation) we simply write p(x).

4



Note 8 Informatics 2B - Learning

−4 −3 −2 −1 0 1 2 3 4
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

x

p
(x

|m
,s

)

pdf of Gaussian Distribution

mean=0
variance=1

Figure 8.4: One dimensional Gaussian (µ=0, σ2=1)

All Gaussians have the same shape, with the location controlled by the mean, and the dispersion
(horizontal scaling) controlled by the variance.1 Figure 8.4 shows a one-dimensional Gaussian with
zero mean and unit variance (µ=0, σ2=1.)

In Equation (8.3), the mean occurs in the exponential part of the pdf, exp(−0.5(x − µ)2/σ2). This term
will have a maximum (exp(0)=1) when x=µ; thus the peak of the Gaussian corresponds to the mean,
and we can think of it as the location parameter.

In one dimension, the variance can be thought of as controlling the width of the Gaussian pdf. Since
the area under the pdf must equal 1, this means that the wide Gaussians have lower peaks than
narrow Gaussians. This explains why the variance occurs twice in the formula for a Gaussian. In the
exponential part exp(−0.5(x − µ)2/σ2), the variance parameter controls the width: for larger values of
σ2, the value of the exponential decreases more slowly as x moves away from the mean. The term
1/
√

2πσ2 is the normalisation constant, which scales the whole pdf to ensure that it integrates to 1.
This term decreases with σ2: hence as σ2 decreases so the pdf gets a taller (but narrower) peak. The
behaviour of the pdf with respect to the variance parameter is shown in Figure 8.5.

1To be precise, the width of a distribution scales with its standard deviation, σ, i.e. the square root of the variance.

5

Note 8 Informatics 2B - Learning

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

-6 -4 -2 0 2 4 6

p
(
x
|
m
,
s
)

x

pdfs of Gaussian distributions

σ=2.0

σ=0.25

µ=0.0

µ=0.0

µ=0.0
σ=0.5

σ=1.0

µ=0.0

Figure 8.5: Four Gaussian pdfs with zero mean and different standard deviations.

8.3 Parameter estimation

A Gaussian distribution has two parameters the mean (µ) and the variance(σ2). In machine learning or
pattern recognition we are not given the parameters, we have to estimate them from data. As in the
case of Naive Bayes we can choose the parameters such that they maximise the likelihood of the model
generating the training data. In the case of the Gaussian distribution the maximum likelihood estimate
(MLE) of the mean and the variance2 results in:

µ̂ =
1
N

N∑

n=1

xn , (8.4)

σ̂2 =
1
N

N∑

n=1

(xn − µ̂)2 , (8.5)

where xn denotes the feature value of n’th sample, and N is the number of samples in total.

8.3.1 Maximum likelihood parameter estimation for Gaussian distribution

The two formulas Equation (8.4) and Equation (8.5) are very popular, but it is not a good practice
that we just remember them without understanding how they are derived in the context of Gaussian
distribution.

We here consider the parameter estimation as an optimisation problem:

max
µ, σ2

p(x1, . . . , xN |µ, σ2) , (8.6)

where we try to find such µ and σ2 that maximise the likelihood. Note that this likelihood is a function
of µ and σ2, and not of the data, since the data are fixed - they are given and do not change. To

2The maximum likelihood estimate of the variance turns out to be a biased form of the sample variance that is normalised
by N−1 rather than N.

6



Note 8 Informatics 2B - Learning

make the optimisation problem tractable, we introduce an assumption that all the training samples are
independent from each other, so that the optimisation problem is simplified to

max
µ, σ2

p(x1 |µ, σ2) · · · p(xN |µ, σ2) (8.7)

Applying the natural log to the likelihood and letting it denoted by LL(µ, σ2),

LL(µ, σ2) = ln
(
p(x1 |µ, σ2) · · · p(xN |µ, σ2)

)
(8.8)

=

N∑

n=1

ln p(x1 |µ, σ2) (8.9)

=

N∑

n=1

ln
(

1√
2πσ2

exp
(−(xn − µ)2

2σ2

))
(8.10)

= −N
2

ln(2π) − N
2

ln
(
σ2

)
−

N∑

n=1

(xn − µ)2

2σ2 (8.11)

As we studied in Section 5.5 in Note 5, we can find the optimal parameters of this unconstrained
optimisation problem by solving the following system of equations:

∂LL(µ, σ2)
∂µ

= 0 (8.12)

∂LL(µ, σ2)
∂σ2 = 0 (8.13)

You can easily confirm that Equation (8.4) and Equation (8.5) are the solutions.

8.4 Example

A pattern recognition problem has two classes, S and T . Some observations are available for each
class:

Class S : 10 8 10 10 11 11
Class T : 12 9 15 10 13 13

We assume that each class may be modelled by a Gaussian. Using the above data, estimate the
parameters of the Gaussian pdf for each class, and sketch the pdf for each class.

The mean and variance of each pdf are estimated with MLE shown in Equation (8.4) and Equation (8.5).

µ̂S =
(10 + 8 + 10 + 10 + 11 + 11)

6
= 10

σ̂2
S =

(10 − 10)2 + (8 − 10)2 + (10 − 10)2 + (10 − 10)2 + (11 − 10)2 + (11 − 10)2

6
= 1

µ̂T =
(12 + 9 + 15 + 10 + 13 + 13)

6
= 12

σ̂2
T =

(12 − 12)2 + (9 − 12)2 + (15 − 12)2 + (10 − 12)2 + (13 − 12)2 + (13 − 12)2

6
= 4

7

Note 8 Informatics 2B - Learning

0 5 10 15 20 25
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

x

p
(x
)

P(x|S)

P(x(T)

Figure 8.6: Estimated Gaussian pdfs for class S (µ̂=10, σ̂2=1) and class class T (µ̂=12, σ̂2=4)

The process of estimating the parameters from the training data is sometimes referred to as fitting the
distribution to the data.

Figure 8.6 shows the pdfs for each class. The pdf for class T is twice the width of that for class S : the
width of a distribution scales with its standard deviation, not its variance.

8.5 The multivariate Gaussian distribution and covariance

The univariate (one-dimensional) Gaussian may be extended to the multivariate (multi-dimensional)
case. The D-dimensional Gaussian is parameterised by a mean vector, µ = (µ1, . . . , µD)T , and a
covariance matrix3, Σ = (σi j), and has a probability density

p(x |µ,Σ) =
1

(2π)D/2|Σ|1/2 exp
(
−1

2
(x − µ)TΣ−1(x − µ)

)
. (8.14)

The 1-dimensional Gaussian is a special case of this pdf. The covariance matrix gives the variance
of each variable (dimension) along the leading diagonal, and the off-diagonal elements measure the
correlations between the variables. The argument to the exponential 1

2 (x− µ)TΣ−1(x− µ) is an example
of a quadratic form. |Σ| is the determinant of the covariance matrix Σ.

The mean vector µ is the expectation of x:

µ = E[x] .

The covariance matrix Σ is the expectation of the deviation of x from the mean:

Σ = E[(x − µ)(x − µ)T ] . (8.15)

From Equation (8.15) it follows that Σ = (σi j) is a D×D symmetric matrix; that is ΣT = Σ :

σi j = E[(xi − µi)(x j − µ j)] = E[(x j − µ j)(xi − µi)] = σ ji .

3Σ is a D-by-D square matrix, and σi j or Σi j denotes its element at i’th row and j’th column.

8



Note 8 Informatics 2B - Learning

Note that σi j denotes not the standard deviation but the covariance between i’th and j’th elements of x.
For example, in the 1-dimensional case, σ11 = σ

2.

It is helpful to consider how the covariance matrix may be interpreted. The sign of the covariance, σi j,
helps to determine the relationship between two components:

• If x j is large when xi is large, then (x j − µ j)(xi − µi) will tend to be positive;4

• If x j is small when xi is large, then (x j − µ j)(xi − µi) will tend to be negative.

If variables are highly correlated (large covariance) then this may indicate that one does not give
much extra information if the other is known. If two components of the input vector, xi and x j, are
statistically independent then the covariance between them is zero, σi j=0.

Correlation coefficient The values of the elements of the covariance matrix depend on the unit
of measurement: consider the case when x is measured in metres, compared when x is measured in
millimetres. It is useful to define a measure of dispersion that is independent of the unit of measurement.
To do this we may define the correlation coefficient5 between features xi and x j, ρ(xi, x j):

ρ(xi, x j) = ρi j =
σi j√
σiiσ j j

. (8.16)

The correlation coefficient ρi j is obtained by normalising the covariance σi j by the square root of the
product of the variances σii and σ j j, and satisfies −1 ≤ ρi j ≤ 1:

ρ(x, y) = +1 if y = ax + b a > 0
ρ(x, y) = −1 if y = ax + b a < 0 .

The correlation coefficient is both scale-invariant and location(or shift)-invariant, i.e.:

ρ(xi, x j) = ρ(axi + b, cx j + d) . (8.17)

where a > 0, c > 0, and c and d are arbitrary constants.

8.6 The 2-dimensional Gaussian distribution

Let’s look at a two dimensional case, with the following inverse covariance matrix6:

Σ−1 =

(
σ11 σ12

σ21 σ22

)−1

=
1

σ11σ22 − σ12σ21

(
σ22 −σ12

−σ21 σ11

)
=

(
a11 a12

a12 a22

)
.

4Note that xi in this section denotes the i’th element of a vector x (which is a vector of D random variables) rather than
the i’th sample in a data set {x1, . . . , xN}.

5This is normally referred as ‘Pearson’s correlation coefficient’, whose another version for sampled data was discussed
in Note 2.

6The inverse covariance matrix is sometimes called the precision matrix.

9

Note 8 Informatics 2B - Learning

(Remember the covariance matrix is symmetric so a12=a21.) To avoid clutter, assume that µ= (0, 0)T ,
then the quadratic form is:

xTΣ−1x =
(

x1 x2

) ( a11 a12

a12 a22

) (
x1

x2

)

=
(

x1 x2

) ( a11x1 + a12x2

a12x1 + a22x2

)

= a11x2
1 + 2a12x1x2 + a22x2

2 .

Thus we see that the argument to the exponential expands as a quadratic of D variables (D=2 in this
case).7

In the case of a diagonal covariance matrix:

Σ−1 =

(
σ11 0

0 σ22

)−1

=

( 1
σ11

0
0 1

σ22

)
=

(
a11 0

0 a22

)
,

and the quadratic form has no cross terms:

xTΣ−1x = a11x2
1 + a22x2

2 .

In the multidimensional case the normalisation term in front of the exponential is 1
(2π)d/2 |Σ|1/2 . Recall

that the determinant of a matrix can be regarded as a measure of its size. And the dependence on the
dimension reflects the fact that the volume increases with dimension.

Consider a two-dimensional Gaussian with the following mean vector and covariance matrix:

µ =

(
0
0

)
Σ =

(
1 0
0 1

)

We refer to this as a spherical Gaussian since the probability distribution has spherical (circular)
symmetry. The covariance matrix is diagonal (so the off-diagonal correlations are 0), and the variances
are equal (1). This pdf is illustrated in the plots of this pdf in Figure 8.7a.

Now consider a two-dimensional Gaussian with the following mean vector and covariance matrix 8:

µ =

(
0
0

)
Σ =

(
1 0
0 4

)

In this case the covariance matrix is again diagonal, but the variances are not equal. Thus the resulting
pdf has an elliptical shape, illustrated in Figure 8.7b.

Now consider the following two-dimensional Gaussian:

µ =

(
0
0

)
Σ =

(
1 −1
−1 4

)

In this case we have a full covariance matrix (off-diagonal terms are non-zero). The resultant pdf is
shown in Figure 8.7c.

7Any covariance matrix is positive semi-definite, meaning xTΣ x ≥ 0 for any real-valued vector x. The inverse of
covariance matrix, if it exists, is also positive semi-definite, i.e., xTΣ−1x ≥ 0.

8Like the covariance shown here, a covariance matrix whose off-diagonal elements are all zeros is called ‘diagonal
covariance matrix’, as opposed to ‘full covariance matrix’ that has non-zero off-diagonal elements.

10



Note 8 Informatics 2B - Learning

4

2

x
1

0

Surface plot of p(x
1
, x

2
)

-2

-4-4

-2

0

x
2

2

4

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

p
(x

1
,x

2
)

Contour plot of p(x
1
, x

2
)

x
1

-4 -3 -2 -1 0 1 2 3 4

x
2

-4

-3

-2

-1

0

1

2

3

4

(a) Spherical Gaussian (diagonal covariance, equal variances)

4

2

x
1

0

Surface plot of p(x
1
, x

2
)

-2

-4-4

-2

0

x
2

2

4

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

p
(x

1
,x

2
)

Contour plot of p(x
1
, x

2
)

x
1

-4 -3 -2 -1 0 1 2 3 4

x
2

-4

-3

-2

-1

0

1

2

3

4

(b) Gaussian with diagonal covariance matrix

4

2

x
1

0

Surface plot of p(x
1
, x

2
)

-2

-4-4

-2

0

x
2

2

4

0

0.02

0.04

0.06

0.08

0.16

0.14

0.12

0.1

p
(x

1
,x

2
)

Contour plot of p(x
1
, x

2
)

x
1

-4 -3 -2 -1 0 1 2 3 4

x
2

-4

-3

-2

-1

0

1

2

3

4

(c) Gaussian with full covariance matrix

Figure 8.7: Surface and contour plots of 2–dimensional Gaussian with different covariance structures

11

Note 8 Informatics 2B - Learning

8.7 Parameter estimation

It is possible to show that the mean vector and covariance matrix that maximise the likelihood of the
Gaussian generating the training data are given by: 9

µ̂ =
1
N

N∑

n=1

xn (8.18)

Σ̂ =
1
N

N∑

n=1

(xn − µ̂) (xn − µ̂)T . (8.19)

Alternatively, in a scalar representation:

µ̂i =
1
N

N∑

n=1

xni, for i = 1, . . . ,D (8.20)

σ̂i j =
1
N

N∑

n=1

(xni − µ̂i) (xn j − µ̂ j) for i, j = 1, . . . ,D . (8.21)

As an example consider the data points displayed in Figure 8.8a. To fit a Gaussian to these samples we
compute the mean and variance with MLE. The resulting Gaussian is superimposed as a contour map
on the training data in Figure 8.8b.

8.8 Bayes’ theorem and Gaussians

Many of the rules for combining probabilities that were outlined at the start of the course, are similar
for probability density functions. For example, if x and y are continuous random variables, with
probability density functions (pdfs) p(x), and p(y):

p(x, y) = p(x |y) p(y) (8.22)

p(x) =
∫

p(x, y) dy , (8.23)

where p(x |y) is the pdf of x given y.

Indeed we may mix probabilities of discrete variables and probability densities of continuous variables,
for example if x is continuous and z is discrete:

p(x, z) = p(x |z) P(z) . (8.24)

Proving that this is so requires a branch of mathematics called measure theory.

We can thus write Bayes’ theorem for continuous data x and discrete class k as:

P(Ck | x) =
p(x |Ck) P(Ck)

p(x)

=
p(x |Ck) P(Ck)∑K
ℓ=1 p(x |Cℓ) P(Cℓ)

(8.25)

P(Ck | x) ∝ p(x |Ck) P(Ck) (8.26)

9Again the estimated covariance matrix with MLE is a biased estimator, rather than the unbiased estimator that is
normalised by N−1.

12



Note 8 Informatics 2B - Learning

−4 −2 0 2 4 6 8 10
−5

0

5

10

X1

X
2

(a) Training data

−4 −2 0 2 4 6 8 10
−5

0

5

10

X1

X
2

(b) Estimated Gaussian

Figure 8.8: Fitting a Gaussian to a set of two-dimensional data samples

13

Note 8 Informatics 2B - Learning

The posterior probability of the class given the data is proportional to the probability density of the
data times the prior probability of the class.

We can thus use Bayes’ theorem for pattern recognition with continuous random variables.

If the pdf of continuous random variable x given class k is represented as a Gaussian with mean µk and
variance σ2

k , then we can write: 10

P(Ck | x) ∝ p(x |Ck) P(Ck)

∝ N(x ; µk, σ
2
k) P(Ck)

∝ 1√
2πσ2

k

exp
(−(x − µk)2

2σ2
k

)
P(Ck) . (8.27)

We call p(x |Ck) the likelihood of class k (given the observation x).

8.9 Appendix: Plotting Gaussians with Matlab

plotgauss1D is a function to plot a one-dimensional Gaussian with mean mu and variance sigma2:

function plotgauss1D(mu, sigma2)

% plot 1 dimension Gaussian with mean mu and variance sigma2

sd = sqrt(sigma2); % std deviation

x = mu-3*sd:0.02:mu+3*sd; % location of points at which x is calculated

g = 1/(sqrt(2*pi)*sd)*exp(-0.5*(x-mu).ˆ2/sigma2);

plot(x,g);

Recall that the standard deviation (SD) is the square root of the variance. It is a fact that about 0.68 of
the probability mass of a Gaussian is within 1 SD (either side) of the mean, about 0.95 is within 2 SDs
of the mean, and over 0.99 is within 3 SDs of the mean. Thus plotting a Gaussian for x ranging from
µ − 3σ to µ + 3σ captures over 99% of the probability mass, and we take these as the ranges for the
plot.

The following Matlab function plots two-dimensional Gaussians as a surface or a contour plot (and
was used for the plots in the previous section). We could easily write it to take a (2-dimensional) mean
vector and 2x2 covariance matrix, but it can be convenient to write the covariance matrix in terms of
variances σ j j and correlation coefficient, ρ jk. Recall that:

ρ jk =
σ jk√
σ j jσkk

. (8.28)

Then we may write:
σ jk = ρ jk

√
σ j j
√
σkk (8.29)

where √σ j j is the standard deviation of dimension j. The following code does the job:

function plotgauss2D(xmu, ymu, xvar, yvar, rho)

% make a contour plot and a surface plot of a 2D Gaussian

% xmu, ymu - mean of x, y

10The suffix k in µk and σk denotes the class number rather than the k’ th element of vector.

14



Note 8 Informatics 2B - Learning

% xvar, yvar - variance of x, y

% rho correlation coefficient between x and y

xsd = sqrt(xvar); % std deviation on x axis

ysd = sqrt(yvar); % std deviation on y axis

if (abs(rho) >= 1.0)

disp(’error: rho must lie between -1 and 1’);

return

end

covxy = rho*xsd*ysd; % calculation of the covariance

C = [xvar covxy; covxy yvar]; % the covariance matrix

A = inv(C); % the inverse covariance matrix

% plot between +-2SDs along each dimension

maxsd = max(xsd,ysd);

x = xmu-2*maxsd:0.1:xmu+2*maxsd; % location of points at which x is calculated

y = ymu-2*maxsd:0.1:ymu+2*maxsd; % location of points at which y is calculated

[X, Y] = meshgrid(x,y); % matrices used for plotting

% Compute value of Gaussian pdf at each point in the grid

z = 1/(2*pi*sqrt(det(C))) *

exp(-0.5 * (A(1,1)*(X-xmu).ˆ2 + 2*A(1,2)*(X-xmu).*(Y-ymu) + A(2,2)*(Y-ymu).ˆ2));

surf(x,y,z);

figure;

contour(x,y,z);

The above code computes the vectors x and y over which the function will be plotted. meshgrid takes
these vectors and forms the set of all pairs ([X, Y]) over which the pdf is to be estimated. surf plots
the function as a surface, and contour plots it as a contour map, or plan. You can use the Matlab help
to find out more about plotting surfaces.

In the equation for the Gaussian pdf in plotgauss2D, because we are evaluating over points in a grid,
we write out the quadratic form fully. More generally, if we want to evaluate a D-dimensional Gaussian
pdf for a data point x, we can use a Matlab function like the following:

function y=evalgauss1(mu, covar, x)

% EVALGAUSS1 - evauate a Gaussian pdf

% y=EVALGAUSS1(MU, COVAR, X) evaluates a multivariate Gaussian with

% mean MU and covariance COVAR for a data point X

[d b] = size(covar);

% Check that the covariance matrix is square

if (d ˜= b)

15

Note 8 Informatics 2B - Learning

error(’Covariance matrix should be square’);

end

% force MU and X into column vectors

mu = reshape(mu, d, 1);

x = reshape(x, d, 1);

% subtract the mean from the data point

x = x-mu;

invcovar = inv(covar);

y = 1/sqrt((2*pi)ˆd*det(covar)) * exp (-0.5*x’*invcovar*x);

However, for efficiency it is usually better to estimate the Gaussian pdfs for a set of data points together.
The following function, from the Netlab toolbox, takes an n×d matrix x, where each row corresponds
to a data point.

function y = gauss(mu, covar, x)

% Y = GAUSS(MU, COVAR, X) evaluates a multi-variate Gaussian density

% in D-dimensions at a set of points given by the rows of the matrix X.

% The Gaussian density has mean vector MU and covariance matrix COVAR.

%

% Copyright (c) Ian T Nabney (1996-2001)

[n, d] = size(x);

[j, k] = size(covar);

% Check that the covariance matrix is the correct dimension

if ((j ˜= d) | (k ˜=d))

error(’Dimension of the covariance matrix and data should match’);

end

invcov = inv(covar);

mu = reshape(mu, 1, d); % Ensure that mu is a row vector

x = x - ones(n, 1)*mu; % Replicate mu and subtract from each data point

fact = sum(((x*invcov).*x), 2);

y = exp(-0.5*fact);

y = y./sqrt((2*pi)ˆd*det(covar));

Check that you understand how this function works. Note that sum(a,2) sums along rows of matrix a
to return a column vector of the row sums. (sum(a,1) sums down columns to return a row vector.)

16



Note 8 Informatics 2B - Learning

Exercises

1. Draw a one-dimensional Gaussian distribution by hand as accurate as possible when µ =
3.0, σ2 = 1.0. (You may use a calculator)

2. Using a calculator, find the height (i.e. maximum value) of a one-dimensional Gaussian distribu-
tion for σ2 = 10, 1.0, 0.1, 0.01, 0.001. What the height will be, when σ2 → 0?

3. By solving the system of equations (8.12) and (8.13), confirm that the MLE for a a Gaussian
distribution is given as (8.4) and (8.5).

4. Confirm that the correlation coefficient defined in Equation (8.16) is the same as the Pearson’s
correlation coefficient in Note 2.

5. Prove that the correlation coefficient is scale-invariant and location-invariant as is shown in
Equation (8.17).

6. Consider a 2-dimensional Gaussian distribution with a mean vector µ = (µ1, µ2)T and a diagonal

covariance matrix, i.e., Σ =
(
σ11 0

0 σ22

)
, show that its pdf can be simplified to the product of

two pdfs, each of which corresponds to a one-dimensional Gaussian distribution.

p(x |µ,Σ) = p(x1 |µ1, σ11) p(x2 |µ2, σ22)

7. For each of the Gaussian distributions shown in Figure 8.7, which type of correlation do x1 and
x2 have, (i) a positive correlation, (ii) a negative correlation, or (iii) no correlation?

17

Note 9 Informatics 2B - Learning

Classification with Gaussians

Hiroshi Shimodaira∗

January-March 2020

In the previous chapter we looked at probabilistic models of continuous variables; in particular we
introduced the Gaussian (Normal) probability distribution, probably the most important probability
distribution for continuous variables.

9.1 Classification

As before we use Bayes’ theorem for classification, to relate the probability density function of the
data given the class to the posterior probability of the class given the data.

First we consider the univariate case, with a continuous random variable x, whose pdf, given class C = k,
is a Gaussian with mean µk and variance σ2

k . Using Bayes’ theorem we can write:

P(Ck | x) =
p(x |Ck) P(Ck)

p(x)
∝ p(x |Ck) P(Ck)

∝ N(x; µk, σ
2
k) P(Ck)

∝ 1√
2πσ2

k

exp
(−(x − µk)2

2σ2
k

)
P(Ck) , (9.1)

where p(x |Ck) is the likelihood of class k given observation x. 1

Log likelihoods and log probabilities When dealing with Gaussians, it is often useful to take
logs, and define LL(x |Ck) to denote ln p(x |Ck). We can write the log likelihood of the Gaussian pdf
ln p(x |µk, σ

2
k):

LL(x |µk, σ
2
k) = ln p(x |µk, σ

2
k)

= ln


1√

2πσ2
k

exp
(−(x − µk)2

2σ2
k

)

= − ln
(√

2πσ2
k

)
− (x − µk)2

2σ2
k

=
1
2

(
− ln(2π) − lnσ2

k −
(x − µk)2

σ2
k

)
. (9.2)

∗ c©2014-2020 University of Edinburgh. All rights reserved. This note is heavily based on notes inherited from Steve
Renals and Iain Murray.

1As was mentioned in Note 8, although p(x |Ck) is generally called the class-conditional density function of x, it should
be called the likelihood function of Ck when classification is concerned.

1



Note 9 Informatics 2B - Learning

We can use Bayes’ theorem to write log posterior probability LP(Ck | x):

LP(Ck | x) = LL(x |Ck) + LP(Ck) + const.

=
1
2

(
− ln(2π) − lnσ2

k −
(x − µk)2

σ2
k

)
+ ln P(Ck) + const. , (9.3)

where LP(Ck) is the log prior probability of class k, and ‘const.’ is the log of the constant of proportion-
ality, p(x), in Equation (9.1), Bayes’ theorem.

Log probability ratio If C1 and C2 are modelled by Gaussians with means µ1 and µ2, and variances
σ2

1 and σ2
2, then we can write the log odds (ratio of posterior probabilities) as follows:

ln
P(C1 | x)
P(C2 | x)

= ln P(C1 | x) − ln P(C2 | x) (9.4)

=
1
2

(
− ln(2π) − lnσ2

1 −
(x − µ1)2

σ2
1

)
− 1

2

(
− ln(2π) − lnσ2

2 −
(x − µ2)2

σ2
2

)
+ (ln P(C1) − ln P(C2))

(9.5)

= −1
2

(
(x − µ1)2

σ2
1

− (x − µ2)2

σ2
2

+ lnσ2
1 − lnσ2

2

)
+ ln P(C1) − ln P(C2) . (9.6)

Look at the right hand side of Equation (9.6). The first two terms are the variance-weighted Euclidean
distances from the means, the second two terms are log variances (arising from the normalisation
terms) and the third two terms are the log prior probabilities. Think through why, intuitively, each of
these terms should affect which class you believe best explains an observation.

9.2 Example: Univariate Gaussian classifier

We return to our previous pattern recognition example in Note 8, a problem with two classes, S and T .
Some observations of scalar values are available for each class:

Class S : 10 8 10 10 11 11
Class T : 12 9 15 10 13 13

We assume that each class may be modelled by a Gaussian. The maximum likelihood estimators of the
mean and variance of each pdf are:

µ̂S = 10 σ̂2
S = 1

µ̂T = 12 σ̂2
T = 4

The following unlabelled data points are available:

x1=10 x2=11 x3=6

To which class should each of the data points be assigned? Assume the two classes have equal prior
probabilities.

2

Note 9 Informatics 2B - Learning

Since this is a two class problem, it is convenient to calculate the log posterior probability ratios for
each case. (In a multiclass problem, we would calculate the log posterior probability for each class.)

ln
P(S | X= x)
P(T | X= x)

= −1
2

(
(x − µS )2

σ2
S

− (x − µT )2

σ2
T

+ lnσ2
S − lnσ2

T

)
+ ln P(S ) − ln P(T )

= −1
2

(
(x − µS )2

σ2
S

− (x − µT )2

σ2
T

+ lnσ2
S − lnσ2

T

)

= −1
2

(
(x − 10)2 − (x − 12)2

4
− ln 4

)
.

If the log ratio is less than 0, then assign to class T , otherwise assign to class S .

• x1 = 10:

ln
P(S | X= x1)
P(T | X= x1)

= −1
2

(
(x1 − 10)2 − (x1 − 12)2

4
− ln 4

)

= −1
2

(0 − 1 − ln 4)

≈ 1.19

• x2 = 11:

ln
P(S | X= x2)
P(T | X= x2)

= −1
2

(
(x2 − 10)2 − (x2 − 12)2

4
− ln 4

)

= −1
2

(1 − 0.25 − ln 4)

≈ 0.32

• x3 = 6:

ln
P(S | X= x3)
P(T | X= x3)

= −1
2

(
(x3 − 10)2 − (x3 − 12)2

4
− ln 4

)

= −1
2

(16 − 9 − ln 4)

≈ −2.81

We assign x1 to S ; x2 to S ; x3 to T .

Now assume that the two classes do not have equal prior probabilities, in fact P(S )=0.3, P(T )=0.7.
Including this prior information, to which class should each of the above test data points {x1, x2, x3} be
assigned?

Again compute the log posterior probability ratios:

ln
P(S | X= x)
P(T | X= x)

= −1
2

(
(x − µS )2

σ2
S

− (x − µT )2

σ2
T

+ lnσ2
S − lnσ2

T

)
+ ln P(S ) − ln P(T )

= −1
2

(
(x − 10)2 − (x − 12)2

4
− ln 4

)
+ ln P(S ) − ln P(T )

= −1
2

(
(x − 10)2 − (x − 12)2

4
− ln 4

)
+ ln(3/7) .

Reclassifying use the prior probability information:

3



Note 9 Informatics 2B - Learning

• x1 = 10:

ln
P(S | X= x1)
P(T | X= x1)

= −1
2

(
(x1 − 10)2 − (x1 − 12)2

4
− ln 4

)
+ ln(3/7)

= −1
2

(0 − 1 − ln 4) + ln(3/7)

≈ 0.34

• x2 = 11:

ln
P(S | X= x2)
P(T | X= x2)

= −1
2

(
(x2 − 10)2 − (x2 − 12)2

4
− ln 4

)
+ ln(3/7)

= −1
2

(1 − 0.25 − ln 4) + ln(3/7)

≈ −0.53

• x3 = 6:

ln
P(S | X= x3)
P(T | X= x3)

= −1
2

(
(x3 − 10)2 − (x3 − 12)2

4
− ln 4

)
+ ln(3/7)

= −1
2

(16 − 9 − ln 4) + ln(3/7)

≈ −3.66

We now assign x1 to S ; x2 to T ; x3 to T .

9.3 Multivariate Gaussian classifier

Now consider D-dimensional data x from class C modelled using a multivariate Gaussian:

p(x |C) = p(x |µ,Σ) = N(x;µ,Σ)

=
1

(2π)D/2|Σ|1/2 exp
(
−1

2
(x − µ)TΣ−1(x − µ)

)
. (9.7)

The log likelihood is:

LL(x |µ,Σ) = ln p(x |µ,Σ) = −D
2

ln(2π) − 1
2

ln |Σ| − 1
2

(x − µ)TΣ−1(x − µ) . (9.8)

And we can write the log posterior probability:

ln P(C |x) = −1
2

(x − µ)TΣ−1(x − µ) − 1
2

ln |Σ| + ln P(C) + constant . (9.9)

9.4 Example: Multivariate Gaussian Classifier

Consider the following problem. We have two-dimensional data from three classes (A, B, C). The
classes may be assumed to have equal prior probabilities. Our training data is in files trainA.dat,
trainB.dat, and trainC.dat, with test data in files testA.dat, testB.dat,and testC.dat.

4

Note 9 Informatics 2B - Learning

−8 −6 −4 −2 0 2 4 6
−8

−6

−4

−2

0

2

4

Figure 9.1: Training data from three classes: A (red circles), B (blue crosses) and C (cyan stars)

These files can be downloaded as http://www.inf.ed.ac.uk/teaching/courses/inf2b/labs/
MGC.zip.

There are 200 points from each class for training, and a further 100 points from each class for testing.
The data was generated from Gaussian distributions with the following parameters:

µA =

( −2
−2

)
, ΣA =

(
2 0
0 2

)
,

µB =

(
0
0

)
, ΣB =

(
1 0
0 1

)
,

µC =

(
2
−3

)
, ΣC =

(
4.0 1.0
1.0 1.5

)
.

We can load it into Matlab as follows, then plot the three classes on the same scatter plot (Figure 9.1).

% load training and test data

xa = load(’trainA.dat’);

xb = load(’trainB.dat’);

xc = load(’trainC.dat’);

testa = load(’testA.dat’);

testb = load(’testB.dat’);

testc = load(’testC.dat’);

alltest = [testa; testb; testc];

% plot the training data

figure;

hold on;

scatter(xa(:, 1), xa(:,2), ’r’, ’o’);

5



Note 9 Informatics 2B - Learning

scatter(xb(:, 1), xb(:,2), ’b’, ’x’);

scatter(xc(:, 1), xc(:,2), ’c’, ’*’);

Each row of the matrices xa, xb, etc. corresponds to a 2-dimensional training data point. To model
each class with a Gaussian density, we can immediately estimate the mean and covariance parameters
with the sample mean and covariance (computed using the built-in Matlab functions mean and cov):

% train the gaussians

mua = mean(xa);

mub = mean(xb);

muc = mean(xc);

covara = cov(xa);

covarb = cov(xb);

covarc = cov(xc);

If there are n data points then cov(x) computes the covariance normalising by 1/(n − 1); cov(x,1)
normalises by 1/n.

The resulting estimates for the mean and covariance of each class are as follows:

µ̂A =

( −2.1
−2.1

)
, Σ̂A =

(
2.0 −0.1
−0.1 1.6

)
,

µ̂B =

(
0.1
0.1

)
, Σ̂B =

(
1.0 0.0
0.0 0.9

)
,

µ̂C =

(
2.1
−2.9

)
, Σ̂C =

(
4.0 0.8
0.8 1.4

)
.

Compare these with the true values above.

We can plot the resulting Gaussians as contour plots over the training data points (Figure 9.2).

Figure 9.3 shows the testing points, labelled with their true classes, together with the Gaussians
estimated from the training data.

We can now go ahead and classify each testing point. For test points in class A, we can do the
following:

testaOut = [gauss(mua,covara,testa) gauss(mub,covarb,testa)

gauss(muc, covarc, testa)];

[maxaOut, classa] = max(testaOut,[],2);

The first line applies each of the three Gaussians to all the test points; the second line determines which
class has the highest probability. We can do this for each set of training data. Figures 9.4, 9.5, and 9.6
shows how the test data from each class was classified.

We can look at the results using a confusion matrix. The column of a confusion matrix correspond to
the predicted classes (i.e., classifier outputs). The rows correspond to the actual (true) class labels. The
number at position (r, c) is the number of patterns from true class r that were classified as class c. The
number of correctly classified patterns is obtained by summing the numbers on the leading diagonal:

Predicted class
Test Data A B C

Actual A 77 15 8
class B 5 88 7

C 9 2 89

6

Note 9 Informatics 2B - Learning

−8 −6 −4 −2 0 2 4 6
−8

−6

−4

−2

0

2

4

Figure 9.2: Gaussian distributions estimated from training data for each class

−8 −6 −4 −2 0 2 4 6
−8

−6

−4

−2

0

2

4

Figure 9.3: Test points, with true class labels, and distributions estimated from training data.

7



Note 9 Informatics 2B - Learning

−8 −6 −4 −2 0 2 4 6
−8

−6

−4

−2

0

2

4

Figure 9.4: Classification of test points from class A

−8 −6 −4 −2 0 2 4 6
−8

−6

−4

−2

0

2

4

Figure 9.5: Classification of test points from class B

8

Note 9 Informatics 2B - Learning

−8 −6 −4 −2 0 2 4 6
−8

−6

−4

−2

0

2

4

Figure 9.6: Classification of test points from class C

From the confusion matrix we can see that the overall proportion of test patterns correctly classified is
(77 + 88 + 89)/300 = 254/300 ≈ 0.85.

9.5 Application case study

We discuss the use of a multidimensional Gaussian classifier applied in a medical task. The details are
as follows:

Task Predict recovery of patients entering hospital with severe head injuries.

Input features 6 categorical variables recorded for each patient: Age, plus 5 responses to stimulation
(eye, motor, verbal), graded on scales (e.g., limb movement graded from 1 (nil) to 7 (normal)).

Output classes Three output classes: 1 (death); 2 (severe disability); 3 (good recovery).

Data set 500 patients in both the training and test sets.

Imbalanced classes 50% class 1, 10% class 2, 40% class 3.

Missing data Some feature values in some patterns were missing.

(D. M. Titterington et al. (1981), “Comparison of discrimination techniques applied to a complex data
set of head-injured patients”, J Roy Stat Soc Ser A, 144(2), 145–175.)

This problem was tackled by modelling each class using a multivariate Gaussian. Training thus
consisted of estimating the mean, covariance matrix and prior probability for each class. The mean
vector and covariance matrix for each class was estimated using maximum likelihood (i.e., estimated
using sample mean and sample covariance). The prior probabilities were estimated as the relative
frequency for each class.

9



Note 9 Informatics 2B - Learning

The missing values in the training set filled in with the class mean; since the class is unknown in the
test set, the missing values in the test set were filled in with the overall mean.

At test time, each test data point was assigned to the class with the highest posterior probability.

First it is useful to see how well the system performs when tested on the training data. This is the
confusion matrix that was obtained:

Predicted class
Training Data 1 2 3
Actual 1 209 0 50

class 2 22 1 29
3 15 1 173

Overall 76.6% ((209 + 1 + 173)/500 = 383/500) of the training patterns were correctly classified.

The following confusion matrix was obtained on the test data:

Predicted class
Test Data 1 2 3
Actual 1 188 0 59

class 2 19 1 28
3 29 2 171

Overall 72.0% ((188 + 1 + 171)/500 = 360/500) of the test patterns were correctly classified.

There are various points which may be noted from this experiment:

• The classification accuracy on the training set was better than the test set, but only a relative
improvement of about 6.4%.

• Class two, which corresponded to only 10% of the training set, was rarely selected by the system.

• The baseline strategy, which could be obtained by choosing the class with the highest prior
probability (class 1) for each example (i.e., ignoring the data) would achieve about 50% correct.

• The main confusion concerned items from class 1 being misclassified as class 3 (about 10% of
all the data in both training and test sets).

10

Note 9 Informatics 2B - Learning

Exercises

1. For the example in Section 9.2, considering a test sample x4 = 7 and assuming equal prior
probabilities, calculate P(S |X= x4) and P(T |X= x4).

2. For the example in Section 9.4, Sketch the true Gaussian distributions (rather than those esti-
mated) by hand for class A, B, and C. After you drew the graphs, try plotting the distributions
with a software tool.

3. For the example in Section 9.4, calculate the likelihood of a sample x = (0,−2)T for each class,
A,B, and C, assuming that you know the true parameters of the Gaussian distributions. (you may
use a calculator, but refrain from using a software tool first.)

11



Note 10 Informatics 2B - Learning

Discriminant Functions

Hiroshi Shimodaira∗

January-March 2020

In the previous chapter we saw how we can combine a Gaussian probability density function with
class prior probabilities using Bayes’ theorem to estimate class-conditional posterior probabilities. For
each point in the input space we can estimate the posterior probability of each class, assigning that
point to the class with the maximum posterior probability. We can view this process as dividing the
input space into decision regions, separated by decision boundaries. In the next section we investigate
whether the maximum posterior probability rule is indeed the best decision rule (in terms of minimising
the number of errors). In the following sections we introduce discriminant functions which define
the decision boundaries, and investigate the form of decision functions induced by Gaussian pdfs
with different constraints on the covariance matrix. We then discuss a particular type of discriminant
functions, perceptron, which finds a decision boundary directly from data without knowing probabilistic
distributions.

10.1 Decision boundaries

We may assign each point in the input space as a particular class. This divides the input space into
decision regions Rk, such that a point falling in Rk is assigned to class Ck. In the general case, a
decision region Rk need not be contiguous, but may consist of several disjoint regions each associated
with class Ck. The boundaries between these regions are called decision boundaries.

Figure 10.1 shows the decision regions that result from assigning each point to the class with the
maximum posterior probability, using the Gaussians estimated for classes A, B and C from the example
in the previous chapter.

10.1.1 Placement of decision boundaries

Estimating posterior probabilities for each class results in the input space being divided into decision
regions, if each point is classified as the class with the highest posterior probability. But is this an
optimal placement of decision boundaries?

Consider a 1-dimensional feature space (x) and two classes C1 and C2. A reasonable criterion for the
placement of decision boundaries is one that minimises the probability of misclassification. To estimate
the probability of misclassification we need to consider the two ways that a point can be classified
wrongly:

1. assigning x to C1 when it belongs to C2 (x is in decision region R1 when it belongs to class C2);

∗ c©2014-2020 University of Edinburgh. All rights reserved. This note is heavily based on notes inherited from Steve
Renals and Iain Murray.

1

Note 10 Informatics 2B - Learning

−8 −6 −4 −2 0 2 4 6 8
−8

−6

−4

−2

0

2

4

6

8

x
1

x
2

Decision regions for 3−class example

Figure 10.1: Decision regions for the three-class two-dimensional problem from the previous chapter.
Class A (red), class B (blue), class C (cyan).

2. assigning x to C2 when it belongs to C1 (x is in R2 when it belongs to C1).

Thus the probability of the total error may be written as:

P(error) = P(x ∈ R2,C1) + P(x ∈ R1,C2) .

Expanding the terms on the right hand side as conditional probabilities, we may write:

P(error) = P(x ∈ R2 |C1) P(C1) + P(x ∈ R1 |C2) P(C2) . (10.1)

10.1.2 Overlapping Gaussians

Figure 10.2 illustrates two overlapping Gaussian distributions (assuming equal priors). Two possible
decision boundaries are illustrated and the two regions of error are coloured.

We can obtain P(x ∈ R2 |C1) by integrating p(x |C1) within R2, and similarly for P(x ∈ R1 |C2), and
thus rewrite Equation (10.1) as:

P(error) =
∫

R2

p(x |C1) P(C1) dx +
∫

R1

p(x |C2) P(C2) dx . (10.2)

Minimising the probability of misclassification is equivalent to minimising P(error). From Equa-
tion (10.2) we can see that this is achieved as follows, for a given x:

• if p(x |C1) P(C1) > p(x |C2) P(C2), then point x should be in region R1;

• if p(x |C2) P(C2) > p(x |C1) P(C1), then point x should be in region R2.

The probability of misclassification is thus minimised by assigning each point to the class with the
maximum posterior probability.

2



Note 10 Informatics 2B - Learning

−10 −8 −6 −4 −2 0 2 4 6 8 10
0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

0.2

−10 −8 −6 −4 −2 0 2 4 6 8 10
0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

0.2

Figure 10.2: Overlapping Gaussian pdfs. Two possible decision boundaries are shown by the dashed
line. The decision boundary on the left hand plot is optimal, assuming equal priors. The overall
probability of error is given by the area of the shaded regions under the pdfs.

It is possible to extend this justification for a decision rule based on the maximum posterior probability
to D-dimensional feature vectors and K classes. In this case consider the probability of a pattern being
correctly classified:

P(correct) =
K∑

k=1

P(x ∈ Rk,Ck) (10.3)

=

K∑

k=1

P(x ∈ Rk |Ck) P(Ck) (10.4)

=

K∑

k=1

∫

Rk

p(x |Ck) P(Ck) dx . (10.5)

This performance measure is maximised by choosing the Rk such that each x is assigned to the class k
that maximises p(x |Ck) P(Ck). This procedure is equivalent to assigning each x to the class with the
maximum posterior probability.

Thus the maximum posterior probability decision rule is equivalent to minimising the probability of
misclassification. However, to obtain this result we assumed both that the class-conditional models are
correct, and that the models are well-estimated from the data.

10.2 Discriminant functions

If we have a set of K classes then we may define a set of K discriminant functions yk(x), one for each
class. Data point x is assigned to class Ck if

yk(x) > yℓ(x) for all ℓ , k.

In other words: assign x to the class Ck whose discriminant function yk(x) is biggest.

This is precisely what we did in the previous chapter when classifying based on the values of the log
posterior probability. Thus the log posterior probability of class Ck given a data point x is a possible

3

Note 10 Informatics 2B - Learning

discriminant function:

yk(x) = ln P(Ck |x) = ln p(x |Ck) + ln P(Ck) + const. (10.6)

The posterior probability could also be used as a discriminant function, with the same results: choosing
the class with the largest posterior probability is an identical decision rule to choosing the class with
the largest log posterior probability.

As discussed above, classifying a point as the class with the largest (log) posterior probability cor-
responds to the decision rule which minimises the probability of misclassification. In that sense, it
forms an optimal discriminant function. A decision boundary occurs at points in the input space where
discriminant functions are equal. If the region of input space classified as class Ck and the region
classified as class Cℓ are contiguous, then the decision boundary separating them is given by:

yk(x) = yℓ(x) .

Decision boundaries are not changed by monotonic transformations (such as taking the log) of the
discriminant functions.

Formulating a pattern classification problem in terms of discriminant functions is useful since it is
possible to estimate the discriminant functions directly from data, without having to estimate probability
density functions on the inputs. Direct estimation of the decision boundaries is sometimes referred
to as discriminative modelling. In contrast, the models that we have considered so far are generative
models: they could generate new ‘fantasy’ data by choosing a class label, and then sampling an input
from its class-conditional model.

10.3 Discriminant functions for class-conditional Gaussians

What is the form of the discriminant function when using a Gaussian pdf? As before, we take the
discriminant function as the log posterior probability:

yk(x) = ln P(Ck |x) = ln p(x |Ck) + ln P(Ck) + const.

= −1
2

(x − µk)
TΣ−1

k (x − µk) −
1
2

ln |Σk| + ln P(Ck) . (10.7)

We have dropped the term −1/2 ln(2π), since it is a constant that occurs in the discriminant function
for each class. The first term on the right hand side of Equation (10.7) is quadratic in the elements of x
(i.e., if you multiply out the elements, there will be some terms containing x2

i or xix j).

10.4 Linear discriminants

Let’s consider the case in which the Gaussian pdfs for each class all share the same covariance matrix.
That is, for all classes Ck, Σk=Σ. In this case Σ is class-independent (since it is equal for all classes),
therefore the term −1/2 ln |Σ| may also be dropped from the discriminant function and we have:

yk(x) = −1
2

(x − µk)
TΣ−1(x − µk) + ln P(Ck) . (10.8)

If we explicitly expand the quadratic matrix-vector expression we obtain the following:

yk(x) = −1
2

(xTΣ−1x − xTΣ−1µk − µT
kΣ
−1x + µT

kΣ
−1µk) + ln P(Ck) . (10.9)

4



Note 10 Informatics 2B - Learning

C2

x1

x2

y1(x)=y2(x)

C1

Figure 10.3: Discriminant function for equal covariance Gaussians

The mean µk depends on class Ck, but (as stated before) the covariance matrix is class-independent.
Therefore, terms that do not include the mean or the prior probabilities are class independent, and may
be dropped. Thus we may drop xTΣ−1x from the discriminant.

We can simplify this discriminant function further. It is a fact that for a symmetric matrix M and
vectors a and b:

aT Mb = bT Ma .

Now since the covariance matrix Σ is symmetric, it follows that Σ−1 is also symmetric.1 Therefore:

xTΣ−1µk = µ
T
kΣ
−1x .

We can thus simplify Equation (10.9) as:

yk(x) = µT
kΣ
−1x − 1

2
µT

kΣ
−1µk + ln P(Ck) . (10.10)

This equation has three terms on the right hand side, but only the first depends on x. We can define two
new variables wk (D-dimension vector) and wk0, which are derived from µk, P(Ck), and Σ:

wT
k = µ

T
kΣ
−1 (10.11)

wk0 = −1
2
µT

kΣ
−1µk + ln P(Ck) = −1

2
wT

k µk + ln P(Ck) . (10.12)

Substituting Equation (10.11) and Equation (10.12) into Equation (10.10) we obtain:

yk(x) = wT
k x + wk0 . (10.13)

This is a linear equation in D dimensions. We refer to wk as the weight vector and wk0 as the bias for
class Ck.

We have thus shown that the discriminant function for a Gaussian which shares the same covariance
matrix with the Gaussians pdfs of all the other classes may be written as Equation (10.13). We call such
discriminant functions linear discriminants: they are linear functions of x. If x is two-dimensional, the
decision boundaries will be straight lines, illustrated in Figure 10.3. In three dimensions the decision
boundaries will be planes. In D-dimensions the decision boundaries are called hyperplanes.

1It also follows that xTΣ−1x ≥ 0 for any x.

5

Note 10 Informatics 2B - Learning

10.5 Spherical Gaussians with equal covariance

Let’s look at an even more constrained case, where not only do all the classes share a covariance
matrix, but that covariance matrix is spherical: the off-diagonal terms (covariances) are all zero, and
the diagonal terms (variances) are equal for all components. In this case the matrix may be defined by
a single number, σ2, the value of the variances:

Σ = σ2I

Σ−1 =
1
σ2 I

where I is the identity matrix.

Since this is a special case of Gaussians with equal covariance, the discriminant functions are linear,
and may be written as Equation (10.13). However, we can get another view of the discriminant
functions if we write them as:

yk(x) = −||x − µk||2
2σ2 + ln P(Ck) . (10.14)

If the prior probabilities are equal for all classes, the decision rule simply assigns an unseen vector to
the nearest class mean (using the Euclidean distance). In this case the class means may be regarded as
class templates or prototypes.

Exercise: Show that Equation (10.14) is indeed reduced to a linear discriminant.

10.6 Two-class linear discriminants

To get some more insights into linear discriminants, we can look at another special case: two-class
problems. Two class problems occur quite often in practice, and they are more straightforward to think
about because we are considering a single decision boundary between the two classes.

In the two-class case it is possible to use a single discriminant function: for example one which takes
value zero at the decision boundary, negative values for one class and positive values for the other. A
suitable discriminant function in this case is the log odds (log ratio of posterior probabilities):

y(x) = ln
P(C1 |x)
P(C2 |x)

= ln
p(x |C1)
p(x |C2)

+ ln
P(C1)
P(C2)

= ln p(x |C1) − ln p(x |C2) + ln P(C1) − ln P(C2) . (10.15)

Feature vector x is assigned to class C1 when y(x) > 0; x is assigned to class C2 when y(x) < 0. The
decision boundary is defined by y(x) = 0.

If the pdf for each class is a Gaussian, and the covariance matrix is shared, then the discriminant
function is linear:

y(x) = wT x + w0 ,

where w is a function of the class-dependent means and the class-independent covariance matrix, and
the w0 is a function of the means, the covariance matrix and the prior probabilities.

The decision boundary for the two-class linear discriminant corresponds to a (D−1)-dimensional
hyperplane in the input space. Let a and b be arbitrary two points on the decision boundary. Then:

y(a) = 0 = y(b) .

6



Note 10 Informatics 2B - Learning

0

0
Ty( )= w x +x

||w||
=||p||

|w |

y(x)<0

O x

p

1

x2

w

y(x)=0

y(x)>0

w

Figure 10.4: Geometry of a two-class linear discriminant y(x) = wT x + w0.

And since y(x) is a linear discriminant:

wT a + w0 = 0 = wT b + w0.

And a little rearranging gives us:
wT (a − b) = 0 . (10.16)

In three dimensions, Equation (10.16) is the equation of a plane, with w being the vector normal to the
plane. In higher dimensions, this equation describes a hyperplane, and w is normal to any vector lying
on the hyperplane. The hyperplane is the decision boundary in this two-class problem.

The distance from the hyperplane to the origin (0, 0) is the length of of the position vector p that points
to the foot of perpendicular from the origin to the hyperplane. Since y(p) = wT p+w0 = 0, the distance
is thus given by:

ℓ = ‖p‖ =
∣∣∣∣∣∣

(
w
‖w‖

)T

p
∣∣∣∣∣∣ =
|w0|
‖w‖ , (10.17)

which is illustrated in Figure 10.4.

10.7 Perceptron

We now consider a two-class linear discriminant function whose output is binary - 0 for Class 0,
and 1 for Class 1. This can be achieved by applying a unit step function g(a) to the output of linear
discriminant, so that the binary-output discriminant function is defined as

y(x) = g(wT x + w0), (10.18)

where

g(a) =
{

1, a ≥ 0,
0, a < 0. (10.19)

We see that the output y(x) is 1 if x belongs to the positive side of the decision boundary (including the
boundary), and 0 otherwise.

This type of discriminant function is called ‘perceptron’, which was invented by Frank Rosenblatt in
late 1950s. The original idea of perceptron was to mimic a funciton of human brain with a machine

7

Note 10 Informatics 2B - Learning

that is capable of learning, where the machine adjusts its parameters in a trial and error manner to
reduce errors. The Rosenblatt’s original perceptron has very limited ability, but it has been extended
in various ways, and it forms the basis of modern artificial neural networks. We consider a simple
mathematical model of the original perceptron in this section.

10.7.1 Perceptron error correction algorithm

Assume we have got a set of training samples {x1, . . . , xN}, where each sample xi, i=1, . . . ,N, has a
label ti of a binary value, 0 for Class 0 and 1 for Class 1.

For the sake of simplicity, we introduce new variables (augmented vectors), ẇ =
(

w0

w

)
and ẋ =

(
1
x

)
,

so that
wT x + wo = ẇT ẋ . (10.20)

We re-define y(ẋ) accordingly such that y(ẋ) = g(ẇT ẋ). In the perceptron training, we repeat adjusting
the weight vector ẇ for each input ẋi to reduce misclassification. Let ẇ(s) denote the weight vector
after s-th training iteration, where ẇ(0) means the initial weight vector. We train the model with the
following algorithm.

Step 1 Set s = 0, and initialise the weight vector ẇ(0).

Step 2 For each training sample ẋi, i = 1, . . . ,N, calculate the output y(ẋi), and modify the weight
vector as follows if ẋi is misclassified.

ẇ(s+1) =

{
ẇ(s) + η ẋi, ti = 1,
ẇ(s) − η ẋi, ti = 0, (10.21)

where η is a positive constant (0 < η < 1) called learning rate. The weight vector is not modified
if ẋi is classified correctly.

Step 3 Increment s by 1, and terminate if ẇ does not change (i.e. convergence), otherwise repeat Step
2.

The Step 2 requires us to check whether ẋi is classified correctly or not, which can be simplified to the
following formula:

ẇ(s+1) = ẇ(s) + η (ti−y(ẋi)) ẋi . (10.22)

Does the training algorithm above stop in a finite time? We can prove that the algorithm converges if
the data set is ‘linearly separable’ - there is a linear decision boundary that separates all the training
samples without errors. On the other hand, the algorithm does not converge if the data set is not linearly
separable.

10.7.2 Multi-layer Perceptron

Although the original perceptron is just a linear classifier, we can combine more than one perceptron
to form complex decision boundaries and regions.

Let’s consider a toy example of 2D data shown in Figure 10.5, in which there are two decision
boundaries and three disjoint regions - one region shown in a dark colour corresponds to Class 1, and
the other two regions shown in white correspond to Class 0. Although each of the decision boundaries

8



Note 10 Informatics 2B - Learning

1

1

0

0

2

2

C

0 1

1

2

C

x

x

C

Figure 10.5: An example of a data set that is not linearly separable.

is linear, the data set is not linearly separable, and a single perceptron is unable to have more than one
decision boundary.

To tackle this problem, we start with considering two perceptrons, M1 : y1(ẋ) = g(ẇT
1 ẋ) , and

M2 : y2(ẋ) = g(ẇT
2 ẋ), each of which is responsible for one of the two decision boundaries. Figure 10.6

illustrates the decision boundaries and regions for M1 and M2, in which it can be confirmed that the
intersection of the dark regions (where y1 = 1 and y2 = 1) corresponds to Class 1. Figure 10.7 depicts
the output yi of model Mi, i = 1, 2 against input (x1, x2).

Since the output y1 and y2 take binary values, 0 or 1, there are only four possible combinations,
{(y1, y2)} = {(0, 0), (0, 1), (1, 0), (1, 1)}, among which only the pair (1, 1) corresponds to Class 1, and

=1

=0

1

1

1

2

2

y

0 1

1

2

x

x

y

(a) M1

=0

=1

1

2

2

2

2

y

0 1

1

2

x

x

y

(b) M2

Figure 10.6: Decision boundaries and regions of M1 and M2.

(a) M1 (b) M2

Figure 10.7: Output of M1 and M2 against input (x1, x2).

9

Note 10 Informatics 2B - Learning

2

1

1

1

y

y

0

Figure 10.8: Illustration of y1 - y2 plane.
Figure 10.9: Output of M3.

2

1 2

1

z

x1

1

x

yy

1 2

3M

MM

Figure 10.10: Structure of the multi-layer per-
ceptron comprised of M1, M2, and M3.

Figure 10.11: Output of the multi-layer percep-
tron.

{(0, 1), (1, 0)} to Class 0.2 See the plotting on y1 - y2 plane in Figure 10.8.

It is easy to see that the point (1, 1) in y1-y2 plane can be separated from the other points by a single
line, which can be done with another perceptron, say M3, taking (y1, y2) as input, and giving z as output:
z(ẏ) = g(ẇT

3 ẏ), where ẏ = (1, y1, y2)T . Figure 10.9 depicts the output z of M3 against input (y1, y2),
where the three points (0, 0), (0, 1), (1, 0) are shown in white, and the other point (1, 1) in red.

Figure 10.10 depicts the structure of the extended perceptron that consists of three basic perceptron
M1, M2, and M3. As you can see, it consists of two layers - the first layer consisting of M1 and M2,
and the second (output) layer consisting of M3. Note that the whole model is referred to as multi-layer
perceptron, and each basic perceptron (Mi, i=1, 2, 3) is usually referred to as cell, node or unit.

This example indicates that multi-layer perceptrons can form complex decision boundaries and regions.
Unfortunately, the original perceptron training algorithm is not applicable to multi-layer perceptrons,
but we can find weight vectors if the decision boundaries are piece-wise linear and the geometry of the
boundaries and regions is known. For example, the region of y1(ẋ) = 1 in Figure 10.6a is defined by
the following inequality.

− 0.5 + x1 + x2 ≥ 0. (10.23)

Thus we can use (−0.5, 1, 1)T , or generally (−0.5c, c, c)T , as the weight vector ẇ1 of M1, where c is an
arbitrary positive constant. The weight vectors of M2 and M3 can be found in the same manner.

2Note that we ignore the point (0, 0), since there is no input (x1, x2) that corresponds to that point.

10



Note 10 Informatics 2B - Learning

Exercises

1. Considering a two-class classification problem, where each class is modelled with a D-dimensional
Gaussian distribution. Derive the formula for the decision boundary, and show that it is quadratic
in x.

2. Considering a classification problem of two classes, whose discriminant function takes the form,
y(x) = wT x + w0.

• Show that the decision boundary is a straight line when D = 2.

• Show that the weight vector w is a normal vector to the decision boundary.

3. Regarding the perceptron weight update formula of Equation 10.22, show why the learning
parameter η needs to be positive.

4. Design a multi-layer perceptron which classifies an input vector (x1, x2) into Class 1 if the input
lies in the square (including the perimeter) whose four corners are {(1, 1), (1, 2), (2, 2), (1, 2)},
otherwise it classifies the input to Class 0. You should identify the structure of the perceptron
and weight vectors.

11

Note 11 Informatics 2B - Learning

Single-Layer Neural Networks

Hiroshi Shimodaira∗

January-March 2020

We have shown that if we have a pattern classification problem in which each class k is modelled by a
pdf p(x |Ck), then we can define discriminant functions yk(x) which define the decision regions and
the boundaries between classes. If the classes have Gaussian pdfs and all share the same covariance
matrix, then the discriminant functions are linear.

If we are concerned with performing pattern classification, we do not have to first estimate the pdfs for
each class, and then derive the discriminant functions. We can find the discriminant functions directly.
We discussed perceptrons as an example of such discriminants in the previous chapter, but the use of
perceptrons was very limited. In this chapter, we consider discriminant functions whose parameter
estimation is defined as an optimisation problem that is practically solvable. We will start by fitting
linear discriminant functions. We will then move on to more complex discriminant functions, suitable
for use with generative processes that would be hard to model directly. The technology we will use to
represent the discriminant functions will be ‘neural networks’.

The neural networks that we will consider are simply functions that take a D-dimensional input, and
return an output (either a scalar or a vector). These functions have free-parameters, known as ‘weights
and biases’. Learning a neural network model entails fitting the weight and bias parameters so that
the input-output mapping is useful for some task. In these notes, we will learn functions that give low
classification error when used as discriminant functions.

11.1 Network representation

Consider the set of linear discriminant functions for a K class problem:

y1(x) = wT
1 x + w10

...
yK(x) = wT

Kx + wK0 .

(11.1)

This can be converted into a matrix-vector form:



y1
...

yK

 =



w10 w11 . . . w1D
...

...
. . .

...
wK0 wK1 . . . wKD





1
x1
...

xD


, (11.2)

or
y =Wẋ , (11.3)

∗ c©2014-2020 University of Edinburgh. All rights reserved. This note is heavily based on notes inherited from Steve
Renals and Iain Murray.

1



Note 11 Informatics 2B - Learning

+

Inputs

Outputs

Bias

+
y1 yK

x0 x1 xD

w10

w11

wK0 wK1

wKD
w1D

Figure 11.1: Single layer neural network with D-dimensional input vector x= (x1, . . . , xD)T and output
vector y= (y1, . . . , yK)T corresponding to K classes. The input vector is augmented with an additional
variable x0=1 which is the bias node. The model is parameterised by the weight matrix W, whose
elements wki are the weights from input xi to output yk (and whose rows are the discriminant functions
wk). The bias of output yk is given by wk0.

where yk = yk(x), y = (y1, . . . , yK)T , W = (ẇ1, . . . , ẇK)T , ẇk = (wk0,wk1, . . . ,wkD)T = (wk0,wT
k )T , and

ẋ = (1, xT )T , which is an augmented vector of x. Hereafter, we sometimes use x to denote ẋ for
simplicity.

We can regard this mapping from x to y as a single-layer neural network, in which the weight vector for
class k connects the input vector (x) to an output corresponding to class k. We can collect the weight
vectors together as the rows of a K × (D + 1) weight matrix W, in which element wki connects input xi

to output yk. To avoid treating the biases wk0 separately, we define an additional input x0, which always
takes the value 1 (hence we have a (D + 1) dimension input vector). The bias for class k, wk0, is the
weight between x0 and yk. The resulting network is illustrated in Figure 11.1.

The equation of such a single-layer neural network (in matrix-vector form) is:

y =Wx (11.4)

or, in terms of the individual components:

yk =

D∑

i=0

wkixi .

We can summarise the terminology we have just introduced:

Input vector x = (x0, x1, . . . , xD)T

Output vector y = (y1, . . . , yK)T

Weight matrix W: wki is the weight from input xi to output yk

2

Note 11 Informatics 2B - Learning

11.2 The training problem

How do we train the weight matrix in a single layer neural network defined by Equation (11.4)?

The network is trained using a training set that contains N input/output pairs {(xn, tn) : 1 ≤ n ≤ N},
where tn= (tn1, . . . , tnK)T is the target output vector for input vector xn. For a classification problem, if
the correct class is k, then:

tnk = 1
tnℓ = 0 ∀ℓ , k .

Representing the target label in a vector in this way is called a ‘1-from-K’ coding.

The single-layer neural network training problem may be stated as follows:

Given a training set, what values should the elements of the weight matrix W take, so as
to minimise an error function defined in terms of the outputs yn?

The error function should measure the distance of the output vectors yn from the corresponding target
vectors tn for all n. A natural way to do this is by taking the (squared) Euclidean distance, and we
define the sum-of-squares error function which computes the sum of squared Euclidean distances
between tn and yn for all members of the training set 1 ≤ n ≤ N. In matrix form we can write:

E(W) =
1
2

N∑

n=1

‖yn − tn‖2 .

Or equivalently, we can write the error in terms of the components:

E(W) =
1
2

N∑

n=1

K∑

k=1

(ynk − tnk)2

=
1
2

N∑

n=1

K∑

k=1


D∑

i=0

wkixni − tnk


2

. (11.5)

This error function E(W) is a smooth function of the weights. We train the network parameters W so
as to minimise the value of the error function E(W) given the training set.

To find the minimum of a function we look for the point where its gradient is 0. 1 In this case we look
for where the derivative of E with respect to the weights equals 0. Since E is a quadratic function of
the weights, the derivatives will be linear functions of the weights. There are two ways of solving the
equation to find the optimal weight matrix:

• An exact approach (pseudoinverse solution)

• Iterative approaches such as

– Iteratively reweighted least squares (IRLS), which is an application of the Newton–Raphson
algorithm

– Gradient descent

We will consider gradient descent: although IRLS is preferable for single-layer neural networks (it
is much faster), gradient descent can also be used in more complicated settings (such as training
multi-layer neural networks).

1See Section 5.5 for gradient and optimisation problem.

3



Note 11 Informatics 2B - Learning

11.3 Gradient descent

Gradient descent is an important optimisation technique, that may be used whenever it is possible to
compute the derivatives of the error function with respect to the parameter to be optimised. For single
layer neural networks, this means taking the derivative of the error function E(W) with respect to the
weight matrix W.

The idea of gradient descent is that to minimise an error function with respect to the parameters,
we want to take small steps in a downhill direction. We take small steps because the gradient is not
uniform, and if we take too big a step we may end up going uphill again! When considering this form
of optimisation, we are considering another multidimensional space, weight space. This is a K · (D+ 1)
dimension space, and a specific weight matrix W corresponds to a point in weight space. The error
function evaluates the error value for a point in weight space (given the training set).

The gradient of E given W is written as ∇WE, the vector of partial derivatives of E with respect to the
elements of W:

∇WE =
(
∂E
∂w10
, . . . ,

∂E
∂wki
, . . . ,

∂E
∂wKD

)T

.

Descending in weight space means adjusting the weight matrix W by moving a small direction down
the gradient, which is the direction along which E decreases most rapidly. This means adjusting the
weight factor in the direction of −∇WE, or adjusting each weight wki by adding a factor −η · ∂E/∂wki,
where η is a small constant called the step size or learning rate.

The operation of gradient descent is as follows:

1. Start with a guess for the weight matrix W (e.g., small randomly chosen weights).

2. Update the weights by adjusting the weight matrix by a small distance in the direction in weight
space along which E decreases most rapidly: i.e., in the direction of −∇WE.

3. Recompute the error, and goto 2, terminating either after a fixed number of steps, or when the
error stops decreasing by more than a threshold.

If we write the value of a weight at iteration τ as wτki, then its updated value is given by:

wτ+1
ki = wτki − η

∂E
∂wki
. (11.6)

The learning rate η specifies how much the parameters should be adjusted along the direction of the
gradient.

11.4 Gradient descent for a single-layer neural network

To apply gradient descent to a single-layer neural network, in which we minimise E with respect to W,
it is necessary to differentiate E in Equation (11.5) with respect to each weight wki:

∂E
∂wki

=

N∑

n=1


D∑

j=0

wk jxn j − tnk

 xni

=

N∑

n=1

(ynk − tnk) xni .

4

Note 11 Informatics 2B - Learning

Define δnk as the difference between the network output and the target for class k, 2 considering the
n’th example:

δnk = ynk − tnk .

We can think of δnk as the error on output k for the n’th training example.

We may thus write the partial derivatives in terms of the δs:

∂E
∂wki

=

N∑

n=1

δnkxni . (11.7)

So the derivative for the weight connecting input i to output k is calculated using the product of the
error at output k, δnk, and the input value xni, summed over all the training set. This derivative is ‘local’
to the weight concerned: it does not require knowledge of other weights in the weight matrix, nor other
elements of the input, output or target vectors.3

Combining the expression for the derivatives (Equation (11.7)) with the expression for gradient descent
update (Equation (11.6)), we obtain:

wτ+1
ki = wτki − η

N∑

n=1

δnkxni . (11.8)

This is the gradient descent learning rule for the weights of a single-layer neural network. (This
gradient descent rule is also known as the delta rule, the Widrow–Hoff rule and LMS learning.)

We may write the algorithm for gradient descent training as follows:
1: procedure gradientDescentTraining(X,T,W)
2: initialise W to small random numbers
3: while not converged do
4: for all k, i: ∆wki ← 0
5: for n← 1,N do
6: for k ← 1,K do
7: ynk ← ∑D

i=0 wkixni

8: δnk ← ynk − tnk

9: for i← 1, d do
10: ∆wki ← ∆wki + δnk · xni

11: end for
12: end for
13: end for
14: for all k, i: wki ← wki − η · ∆wki

15: end while
16: end procedure

11.4.1 The bias parameter

We previously saw a geometric interpretation of the bias parameter for a two-class linear discriminant:
the normal distance of the separating hyperplane from the origin. Here we provide another interpretation
of the bias.

2Note that δnk here is not the Kronecker delta!
3Local computations are convenient and scale well. The locality of computation has also been used to argue for the

‘biological plausibility’ of neural network models of learning. Although any relation to biological neurons is abstract; real
neurons are complicated.

5



Note 11 Informatics 2B - Learning

If we set the derivatives to 0, as above, and explicitly consider only the bias parameter, then we can
write:

∂E
∂wk0

=

N∑

n=1


D∑

j=1

wk jxn j + wk0 − tnk

 = 0 .

If we write the average inputs and targets as follows:

x̄i =
1
N

N∑

n=1

xni

t̄k =
1
N

N∑

n=1

tnk .

Then we may write the solution for the bias as

D∑

j=1

wk j x̄ j + wk0 − t̄k = 0

wk0 = t̄k −
D∑

j=1

wk j x̄ j .

This means that we may interpret the bias as compensating for the difference in the mean of the targets
and the network outputs, averaged over the training set.

11.5 Logistic discriminants

We can generalise linear discriminants by applying a nonlinear function to them. Consider a two-class
linear discriminant, to which we apply an activation function, g:

y(x) = g(wT x + w0) . (11.9)

If g is monotonically increasing, then Equation (11.9) may be regarded as a linear discriminant, since
the decision boundary will still be linear. We may represent this as a two-class, single output, single
layer neural network (Figure 11.2).

For convenience we can define an activation value a:

y(x) = g(a)

a = wT x + w0.

11.5.1 Logistic sigmoid activation function

If we have a two class problem, with classes 1 and 2, then we can express the posterior probability of
C1 using Bayes’ theorem:

P(C1 |x) =
p(x |C1) P(C1)

p(x |C1) P(C1) + p(x |C2) P(C2)
.

If we divide top and bottom of the right hand side by p(x |C1) P(C1), then we obtain:

P(C1 |x) =
1

1 + p(x|C2) P(C2)
p(x|C1) P(C1)

. (11.10)

6

Note 11 Informatics 2B - Learning

+

Inputs

x0 x1 xD

w0

w1

wD

Output

Bias

y = g(a)

a

Figure 11.2: Single layer neural network representation of a generalised linear discriminant. In this
case the output activation function is a logistic sigmoid.

If we define a as the ratio of log posterior probabilities (log odds):

a = ln
p(x |C1) P(C1)
p(x |C2) P(C2)

(11.11)

and substitute into Equation (11.10) we obtain:

P(C1 |x) = g(a) =
1

1 + exp(−a)
. (11.12)

Here, g(a) is the logistic sigmoid activation function, plotted in Figure 11.3. Sigmoid means ‘S’-
shaped: the function maps (−∞,∞) onto (0, 1) — it is a ‘squashing function’. If |a| is small then g(a)
is approximately linear: so a network with logistic sigmoid activation functions approximates a linear
network when the weights (and hence the inputs to the activation function) are small. As a increases,
g(a) saturates to 1, and as a decreases to become large and negative g(a) saturates to 0.

For a single layer neural network:
a = wT x + w0 . (11.13)

If we have a single-layer neural network, with one output, and a logistic sigmoid activation function g
on the output node (Equation (11.9)), then from Equation (11.12) and Equation (11.13) we see that the
posterior probability may be written:

P(C1 |x) = g(a) = g(wT x + w0) .

This corresponds to the single layer neural network of Equation (11.9) and Figure 11.2.

Therefore, for a two class problem (which may be represented with a single output), a single layer
neural network with a logistic sigmoid activation function on the output may be regarded as providing
a posterior probability estimate. This is an interesting result, since it means we may obtain a posterior
probability estimate by training the weights of a single-layer neural network by gradient descent, with
no need to estimate (or assume) Gaussian pdfs. The optimal setting of the weights of such a network,
given a training set, need not be the same as those obtained using a Gaussian classifier with a shared
covariance matrix.

7



Note 11 Informatics 2B - Learning

-6 -4 -2 0 2 4 6

0

0.2

0.4

0.6

0.8

1

a

g
(a

) 
=

 1
 /

 (
1

+
e

x
p

(-
a

))

Figure 11.3: Logistic sigmoid function, g(a) =
1

1 + e−a

This single layer neural network, giving P(C1 |x) = 1/(1 + exp(−wT x − w0)), is known as the logistic
regression binary classifier. Logistic regression is a ‘work-horse’ of practical machine learning: it’s
widely used, and important to understand.

11.5.2 Gradient descent training

Gradient descent training of a single-layer neural network with a logistic sigmoid activation function is
similar to training a linear network. The principal difference is that we must take of the contribution of
the activation function to the gradient.

Consider a network with sigmoid activation functions on the outputs. We can write the ‘forward’
equations of the network as:

ynk = g(ank)

ank =

D∑

i=0

wkixni .

In this case, the sum-of-squares error function is given by:

E =
1
2

N∑

n=1

K∑

k=1

(ynk − tnk)2

=
1
2

N∑

n=1

K∑

k=1

(g(ank) − tnk)2 .

8

Note 11 Informatics 2B - Learning

The partial derivative of the error function with respect to weight wki for pattern n is:

∂En

∂wki
=
∂En

∂ynk

∂ynk

∂ank

∂ank

∂wki

= δnk g′(ank) xni

where δnk = (ynk − tnk), as before. g′(a) is the derivative of the sigmoid activation function. It turns out
that

g′(a) = g(a)(1 − g(a)) .

(You should check this!)

Therefore the total gradient is:

∂E
∂wki

=

N∑

n=1

∂En

∂wki

=

N∑

n=1

g′(ank) δnk xni .

11.6 Softmax

If we have more than two classes then a suitable discriminant function for class k is related to the log
posterior probability:

ak = ln p(x |Ck) P(Ck) ,

where ak is called the activation value of output k.

If we substitute the activation into Bayes’ theorem, we find that the posterior probability is given by
the following expression:

P(Ck |x) =
exp(ak)∑K
ℓ=1 exp(aℓ)

,

which is sometimes referred to as the softmax or normalised exponential.

We can use the softmax as the output function for a multi-class single layer neural network:

yk =
exp(ak)∑
ℓ exp aℓ

ak =

D∑

i=0

wkixi .

This form of output function guarantees that the K output values will sum to 1, a necessary condition
for probability estimates.

We can perform gradient descent training when there is a softmax activation function on the outputs.
We have to be a little more careful when estimating the derivatives, since the output yk depends on the
other outputs yℓ, through the normalisation term in the denominator. Therefore we need to consider the

9



Note 11 Informatics 2B - Learning

partial derivative of yk with respect to all the activation values aℓ when computing the gradient:

∂En

∂wki
=
∂En

∂ank

∂ank

∂wki

∂En

∂ank
=

K∑

ℓ=1

∂En

∂ynℓ

∂ynℓ

∂ank

=

K∑

ℓ=1

δnℓ
∂ynℓ

∂ank

∂En/∂ynℓ equals δnk, as before. The other derivative turns out to be:

∂ynℓ

∂ank
= yℓIkℓ − yℓyk

where Ikℓ = 1 if k = ℓ, and Ikℓ = 0 otherwise.

11.7 ‘Online’ gradient descent

The error function is usually calculated by summing over all input patterns, where En is the contribution
to the error from a single pattern:

E(w) =
N∑

n=1

En(w) .

It is possible to use the gradient of En to update the weights one pattern at a time:

w(τ+1)
ki = w(τ)

ki − η
∂En

∂wki
. (11.14)

This is referred to as online gradient descent. It is usually preferable to choose patterns randomly when
training online. In stochastic gradient descent a training pattern is randomly chosen, the error and its
derivatives computed for that pattern, and the weights are updated using Equation (11.14). Online
gradient descent can be useful for real-time, adaptive applications. Stochastic gradient descent is an
efficient procedure when using large data sets.

11.8 Matlab: Training single layer neural networks

It is straightforward to use single-layer neural networks in Matlab, using the Netlab toolbox. To define
a single layer neural network, with 2 inputs, 2 outputs and a linear output function, use the function
glm:

slnet = glm(2,2,’linear’);

To train this network with gradient descent, we need to set a few options (look at the help page on
graddesc to learn more):

options=foptions;

options(1)=1; %% display/log error values

options(3)=0.01; %% convergence criterion

options(14)=100; %% maximum number of training iterations

options(18)=0.001; %% learning rate (eta)

10

Note 11 Informatics 2B - Learning

Training a network in Netlab is done using the netopt function which takes the specific training
algorithm to be used as an argument. To train this net using gradient descent, where xtrain is the
matrix of training data, and ttrain contains the corresponding targets, one row per pattern.

[slnet options errlog] =

netopt(slnet, options, xtrain, ttrain, ’graddesc’);

plot(errlog);

For comparison try using the IRLS trainer (glmtrain).

The second statement plots the graph of the error versus learning rate. Gradient descent is sensitive to
the value of the learning rate: if it is too high then the step down the gradient is too big, and the error
function can increase instead of decreasing, and is likely to become unstable, increasing rapidly in
later iterations. On the other hand, if the step size is too small, the error rate will decrease more slowly
than possible.

11.8.1 Testing

Once the network is trained, the function glmfwd(net,x) can be used to run the test data xtest
through the network:

testOut=glmfwd(slnet,xtest);

If ttest contains the targets for the test data (i.e., the correct classification), the following piece of
Matlab can be used to compute the classification error:

[maxOut, classified] = max(testOut,[],2);

[tmpOut, answerClasses] = max(ttest,[],2);

numberMisclassified = size(find(classified-answerClasses));

percentError = 100.0 * numberMisclassified / size(answerClasses);

MATLAB tricks:

• max(testOut,[],2); means work along dimension 2 — i.e., returns the maximum value for
each row.

• [maxOut, classified] = max(testOut,[],2); returns the max values for each row in
maxOut, and the index in classified.

• find(classified-answerClasses) returns the indices of non-zero elements (i.e., elements
where the output class is different to the target class).

• size(find(classified-answerClasses)) thus returns the number of misclassified pat-
terns.

To train a single-layer neural network with a logistic sigmoid activation function in Matlab. If xtrain
and ttrain contain the input vectors and targets, then:

options=foptions;

options(1)=1;

options(18)=0.01;

11



Note 11 Informatics 2B - Learning

ttrain = [ta;tb];

slnet=glm(2,1,’logistic’)

[slnet options errlog] =

netopt(slnet, options, xtrain, ttrain, ’graddesc’);

For the softmax activation function, the third argument to glm should be ‘softmax’.

Technical note: (For a good reason) Netlab uses a different error function for logistic sigmoid output
compared with linear output. This means that the error values produced by netopt for the logistic and
linear activation functions are not comparable.

11.8.2 Tasks: Single Layer neural networks

The data for this lab consists of two files ecoli-train.netlab and ecoli-test.netlab; these are
available from:
http://www.inf.ed.ac.uk/teaching/courses/inf2b/labs/ecoli-train.netlab

http://www.inf.ed.ac.uk/teaching/courses/inf2b/labs/ecoli-test.netlab

The lab is concerned with classifying a real data set. The data consists of 5 real-valued inputs and a
discrete class. There are four classes (numbered 1–4). There are 230 training patterns in total (107 for
class 1, 58 for class 2, 39 for class 3 and 26 for class 4). There are also 77 test patterns. The data is to do
with molecular biology, but for this example you don’t need to be concerned with that (for information
the original README file that corresponds to the data set is available on the lab3 web page). The data
has been reformatted into a form suitable for Netlab. Download the files ecoli-train.netlab and
ecoli-test.netlab, and use the method datread to load them, e.g.:

[ecxtrain, ecttrain, nin, nout, ndata] = datread(’ecoli-train.netlab’);

[ecxtest, ecttest, nin, nout, ndata] = datread(’ecoli-test.netlab’);

Carry out the following tasks.

1. Train a single-layer neural network on this data using gradient descent. Observe how the error
decreases per iteration. Experiment with various learning rates. In each case compute the error
rate on the test set.

2. Compare IRLS training with gradient descent training.

3. Repeat the experiments using a single layer neural network with a softmax output activation
function.

11.9 Summary

This chapter has introduced several important concepts:

• The representation of a set of discriminant functions as a single-layer neural network.

• Direct training of the parameters of a single-layer neural network.

• Minimisation of error function by gradient descent in parameter space.

• The logistic sigmoid and softmax activation functions, and their relation to posterior probabilities.

• Online or stochastic gradient descent.

12

Note 12 Informatics 2B - Learning

Multi-Layer Neural Networks

Hiroshi Shimodaira∗

January-March 2020

In the previous chapter, we saw how single-layer linear networks could be generalised by applying an
output activation function such as a sigmoid. We can further generalise such networks by applying a
set of fixed nonlinear transforms φ j to the input vector x. For a single output network:

y(x,w) = g


M∑

j=1

w jφ j(x)

 . (12.1)

Again g is a nonlinear activation function such as a sigmoid. If the functions φ j(x) are fixed and
non-adaptive they are sometimes referred to as basis functions. Using such basis functions broadens
the class of available discriminant functions. Our goal in this chapter is to investigate how to make
these basis functions adaptive: that is to have their own parameters (e.g., another weight matrix) that
may be estimated automatically from a training data set.

Given enough fixed basis functions, and infinite training data, it is possible to approximate any
continuous function. However, for finite datasets, ‘Deep’ networks, which use parameterised basis
functions, often work better than ‘shallow’ networks, which have a large number of fixed basis
functions.

12.1 Multi-layer Perceptrons

In this section we build up a multi-layer neural network model, step by step. This multi-layer network
has different names: multi-layer perceptron (MLP), feed-forward neural network, artificial neural
network (ANN), backprop network.1

The first layer involves M linear combinations of the d-dimensional inputs:

b j =

D∑

i=0

w(1)
ji xi , j = 1, 2, . . . ,M . (12.2)

As before x0=1, with the weights leading out from it corresponding to the biases. The quantities b j

are called activations, and the parameters w(1)
ji are the weights. The superscript ‘(1)’ indicates that this

is the first layer of the network. Each of the activations is then transformed by a nonlinear activation
function g, typically a sigmoid:

z j = h(b j) =
1

1 + exp(−b j)
(12.3)

∗ c©2014-2020 University of Edinburgh. All rights reserved. This note is heavily based on notes inherited from Steve
Renals and Iain Murray.

1MLP is probably the most frequently used name, although it is not strictly accurate. The perceptron is a single layer
network with discontinuous step function nonlinear activation functions, rather than the continuous nonlinear activation
functions used here.

1



Note 12 Informatics 2B - Learning

+

Inputs

x0 x1 xD

Bias

+

+ +

Hidden

Outputs

Bias
z0 z1 zM

yKy1

w
(1)

MD
w
(1)

10

w
(2)

10
w
(2)

KM

Figure 12.1: Network diagram for a multi-layer perceptron (MLP) with two layers of weights.

The outputs z j correspond to the outputs of the basis functions in Equation (12.1). In the context of
neural networks, the quantities z j are interpreted as the output of hidden units—so called because they
do not have values specified by the problem (as is the case for input units) or target values used in
training (as is the case for output units).

In the second layer, the outputs of the hidden units are linearly combined to give the activations of the
K output units:

ak =

M∑

j=0

w(2)
k j z j k = 1, 2, . . . ,K . (12.4)

Again z0=1, corresponding to the bias. This transformation is the second layer of the neural network
parameterised by weights w(2)

k j . The output units are transformed using an activation function; again a
sigmoid may be used:

yk = g(ak) =
1

1 + exp(−ak)
, (12.5)

or for multiclass problems, a softmax activation function:

g(ak) =
exp(ak)∑K
ℓ=1 exp(aℓ)

.

These equations may be combined to give the overall equation that describes the forward propagation
through the network, and describes how an output vector is computed from an input vector, given the
weight matrices:

yk = g


M∑

j=0

w(2)
k j h


D∑

i=0

w(1)
ji xi



 (12.6)

This is illustrated in Figure 12.1.

2

Note 12 Informatics 2B - Learning

12.2 MLP Training: Back-propagation of error

Similar to single-layer neural networks, we can train a network using gradient descent. This involves
defining an error function E, and then evaluating the derivatives ∂E/∂w(2)

k j and ∂E/∂w(1)
ji . The evaluation

of these error derivatives proceeds using a version of the chain rule of differentiation, referred to as
back-propagation of error, or just backprop.

When training single-layer neural networks, the error gradients are the product of the derivative of the
error at the output of the weights and the value at the input to the weight. This interpretation is still
possible for the hidden-to-output weights w(2)

k j , for which a target output is available and the input is
obtained from the hidden units. However target values are not available for hidden units, and so it is
not possible to train the input-to-hidden weights in precisely the same way. This is sometimes called
the credit assignment problem: what is the ‘error’ of a hidden unit? how does the value of a particular
input-to-hidden weight affect the overall error? The solution to this problem is found by systematically
deriving expressions for the relevant derivatives using the chain rule of differentiation.

12.2.1 Error function

To train an MLP we need to define an error function. Again we use the sum-of-squares error function,
obtained by summing over a training set of N examples:

E =
N∑

n=1

En (12.7)

En =
1
2

K∑

k=1

(ynk − tnk)2 . (12.8)

The values of ynk may be computed for each pattern using the MLP forward propagation Equation (12.6).
To avoid clutter, we’ll drop the ‘(1)’ and ‘(2)’ superscripts when writing down weights.

To obtain the overall error gradients, we sum over the training examples:

∂E
∂wk j

=

N∑

n=1

∂En

∂wk j
(12.9)

∂E
∂w ji

=

N∑

n=1

∂En

∂w ji
. (12.10)

3



Note 12 Informatics 2B - Learning

12.2.2 Hidden-to-output weights

First we would like to compute the error gradients for the hidden-to-output weights, ∂En/∂wk j. Now
we can write En in terms of these weights:

En =
1
2

K∑

k=1

(g(ank) − tnk)2

=
1
2

K∑

k=1

g


M∑

j=0

wk jzn j

 − tnk


2

. (12.11)

The derivatives of the error with respect to wk j can be broken down as follows:

∂En

∂wk j
=
∂En

∂ank

∂ank

∂wk j
. (12.12)

The gradient of the error En with respect to the activations ank is often referred to as the error signal
and given the notation δnk, analogous to what we had for single layer neural networks.

δnk =
∂En

∂ank
(12.13)

And since:
∂ank

∂wk j
= zn j (12.14)

we may substitute Equation (12.13) and Equation (12.14) into Equation (12.12) to obtain:

∂En

∂wk j
= δnk zn j (12.15)

where:
δnk =

∂En

∂ynk
· ∂ynk

∂ank
= (ynk − tnk) g′(ank) , (12.16)

similar to single-layer neural networks with a nonlinear activation function.

4

Note 12 Informatics 2B - Learning

12.2.3 Input-to-hidden weights

Now we would like to compute the error gradients for the input-to-hidden weights, ∂E/∂w ji. To do
this we need to make sure that we take into account all the ways in which hidden unit j (and hence
weight w ji) can influence the error. To do this let’s look at δn j, the error signal for hidden unit j:

δn j =
∂En

∂bn j

=

K∑

k=1

∂En

∂ank

∂ank

∂bn j

=

K∑

k=1

δnk
∂ank

∂bn j
. (12.17)

Since hidden unit j can influence the error through all the output units (since it is connected to all of
them), we must sum over all the output units’ contributions to δn j. We need the expression for ∂ank/∂bn j,
obtained by differentiating Equation (12.4) and the hidden unit activation function (Equation (12.3)):

∂ank

∂bn j
=
∂ank

∂zn j

∂zn j

∂bn j

= wk j h′(bn j) . (12.18)

Substituting Equation (12.18) into Equation (12.17) we obtain:

δn j = h′(bn j)
K∑

k=1

δnk wk j . (12.19)

This is the famous back-propagation of error (backprop) equation. By applying the chain rule of
differentiation, backprop obtains the δ values for hidden units by ‘back-propagating’ the δ values of
the outputs, weighted by the hidden-to-output weight matrix. This is illustrated in Figure 12.2. The
derivatives of the input-to-hidden weights can thus be evaluated using:

∂En

∂w ji
=
∂En

∂bn j

∂bn j

∂w ji
= δ j xi . (12.20)

This approach can be recursively applied to further hidden layers.

5



Note 12 Informatics 2B - Learning

Outputs

Hidden units

z j

xi

w
(2)
1 j w

(2)
! j

δ!δ1

w(1)
ji

yKy!y1

w(2)
K j

δj = h′(bj)
∑

!

δ!w!j

δK

Figure 12.2: Back-propagation of error signals in an MLP

12.2.4 Back-propagation algorithm

The back-propagation of error algorithm is summarised as follows:

1. Apply the N input vectors from the training set, xn, to the network and forward propagate using
Equation (12.6) to obtain the set of output vectors yn

2. Using the target vectors tn compute the error E using Equation (12.7) and Equation (12.8).

3. Evaluate the error signals δnk for each output unit using Equation (12.16).

4. Evaluate the error signals δnk for each hidden unit using back-propagation of error (Equa-
tion (12.19)).

5. Use Equation (12.15) and Equation (12.20) to evaluate the derivatives for each training pattern,
obtaining the overall derivatives using Equation (12.9) and Equation (12.10).

6


