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In this chapter we shall look at how to measure the similarity between items. To be precise we’ll look
at a measure of the dissimilarity or distance between feature vectors, as well as a direct measurement of
similarity. We shall then see how such measures can be used to suggest items in collaborative filtering
and recommender systems.

1 Distances

We often want to compare two feature vectors, to measure how different (or how similar) they are. We
hope that similar patterns will behave in a similar way. For example if we are performing handwriting
recognition, a low distance between digit feature vectors (derived from images) might indicate that
they should be given the same label. If we are building a recommender system for an online shop,
similar user feature vectors (derived from their purchasing or browsing histories) might indicate users
with similar tastes. The distance between two items depends on both the representation used by the
feature vectors and on the distance measure used.

If the feature vectors are binary (i.e., all elements are 0 or 1) then the Hamming distance is a possible
distance measure. For real valued vectors, the Euclidean distance is often used: this is familiar from 2-
or 3-dimensional geometry, and may also be generalised to higher dimensions.

1.1 Hamming distance

The Hamming distance between two binary sequences of equal length is the number of positions for
which the corresponding symbols are different. For example the Hamming Distance between 10101010
and 11101001 is 3.

1.2 Euclidean distance

The Euclidean distance is already familiar to you from 2- and 3-dimensional geometry. The Euclidean
distance r2(x, y) between two 2-dimensional vectors x = (x1, x2)T and y = (y1, y2)T is given by:

r2(x, y) =
√

(x1 − y1)2 + (x2 − y2)2 =

√√
2∑

i=1

(xi − yi)2 . (1)

(Superscript T symbolises the transpose operation so we can write a column vector easily within a line,
e.g.,

(
x
y

)
as (x, y)T .)

∗Heavily based on notes inherited from Steve Renals and Iain Murray.
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Body of Burn After Revolutionary
Australia Lies Reading Hancock Milk Road

David Denby
(New Yorker) 3 7 4 9 9 7

Todd McCarthy
(Variety) 7 5 5 3 8 8

Joe Morgenstern
(Wall St Journal) 7 5 5 0 8 4

Claudia Puig
(USA Today) 5 6 8 5 9 8

Peter Travers
(Rolling Stone) 5 8 8 8 10 9

Kenneth Turan
(LA Times) 7 7 8 4 7 8

Table 1: Ratings given to six movies by six film critics (from http://www.metacritic.com).

Generalising to higher dimensions, the Euclidean distance between two d-dimensional vectors x1 =(
x12, x12, x13, . . . , x1d

)T and x2 =
(
x21, x22, x23, . . . , x2d

)T is given by:

r2(x1, x2) =
√

(x11 − x21)2 + (x12 − x22)2 + · · · + (x1d − x2d)2 =

√√√ d∑

j=1

(x1 j − x2 j)2 . (2)

It is often the case that we are not interested in the precise distances, just in a comparison between
distances. For example, we may be interested in finding the closest point (nearest neighbour) to a point
in a data set. In this case it is not necessary to take the square root.

Other distance measures are possible for example the Manhattan (or city-block) metric:

r1(x1, x2) = |x11 − x21| + |x12 − x22| + · · · + |x1d − x2d| =
d∑

j=1

|x1 j − x2 j| . (3)

The notation |a| indicates the absolute value of a. More generally it is possible to use other powers,
giving rise to a more general form (known as the p-norm or Lp-norm):

rp(x1, x2) =


d∑

j=1

|x1 j − x2 j|p


1/p

. (4)

We will be mostly concerned with the familiar Euclidean distance in this course.

2 A simple recommender system

Table 1 shows the ratings that a few well-known US film critics gave to a small group of movies. We
shall use this data to develop a simple recommender system. Unlike a realistic system, in this case
every person has rated every film.
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Figure 1: Plot of critics in a 2-dimensional review space for Hancock and Revolutionary Road. For the
pair of films under consideration the Euclidean distance between two points provides a measure of
how different two reviewers are.

We can represent this data as a matrix, whose rows correspond to a particular critic and whose columns
correspond to a film, and where the value of each element (c,m) is the score given by critic c to film
(movie) m: 

3 7 4 9 9 7
7 5 5 3 8 8
7 5 5 0 8 4
5 6 8 5 9 8
5 8 8 8 10 9
7 7 8 4 7 8



.

If we want a feature vector per critic then we can just take the rows:

x1 = (3, 7, 4, 9, 9, 7)T

. . .

x6 = (7, 7, 8, 4, 7, 8)T ,

where x1 corresponds to David Denby, x2 corresponds to Todd McCarthy, and so on.

If the critics have each reviewed a set of M films (movies), then we can imagine each critic defining a
point in an M-dimensional space, given by that critic’s review scores. The points are hard to visualise
in more than three dimensions (three films). Figure 1 shows a two dimensional version in which the six
critics are placed in a space defined by their reviews of two films. As more users are made available
they can be plotted on the chart, according to their ratings for those films. We make the assumption
that the closer two people are in this review space, then the more similar are their tastes.

Consider a new user who rates Hancock as 2, and Revolutionary Road as 7. This user is also shown in
the review space in Figure 1. Based on these two films, to which critic is the user most similar? It is
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easy to see from the graph that the closest critic to the user is McCarthy. In this 2-dimensional case
Euclidean distance is:

r2(User,McCarthy) =
√

(7 − 8)2 + (2 − 3)2 =
√

2 ∼ 1.4

We can go ahead and use equation (1) to compute the Euclidean distances between six critics in the
6-dimensional review space:

Denby McCarthy Morgenstern Puig Travers Turan

Denby 7.7 10.6 6.2 5.2 7.9
McCarthy 7.7 5.0 4.4 7.2 3.9

Morgenstern 10.6 5.0 7.5 10.7 6.8
Puig 6.2 4.4 7.5 3.9 3.2

Travers 5.2 7.2 10.7 3.9 5.6
Turan 7.9 3.9 6.8 3.2 5.6

Thus the two closest critics, based on these films, are Claudia Puig and Kenneth Turan.

Consider a new user who has not seen Hancock, Australia or Milk, but has supplied ratings to the other
three films:

Body of Burn After Revolutionary
Lies Reading Road

User2 6 9 6

Using a 3-dimensional space defined by the films that User2 has rated, we can compute the distances
to each critic:

Critic r2(critic, user2)

Denby
√

27 = 5.2
McCarthy

√
21 = 4.6

Morgenstern
√

21 = 4.6
Puig

√
5 = 2.2

Travers
√

14 = 3.7
Turan

√
6 = 2.4

Thus, based on these three films, User2 is most similar to Claudia Puig. Can we use this information to
build a simple recommender system? Or, more specifically, can we we use this information to decide
which film out of Milk, Hancock and Australia the system should recommend to User2 based on their
expressed preferences?

We would like to rely on the most similar critics, so we convert our distance measure into a similarity
measure:

sim(x, y) =
1

1 + r2(x, y)
. (5)

We have chosen an ad hoc measure of similarity based on Euclidean distance. However, it has some
desirable properties: a distance of 0 corresponds to a similarity of 1 (the largest value it can take); a
distance of∞ corresponds to a similarity of 0 (the smallest it can take). We now use this measure to
list the critics’ similarity to User2:
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Critic sim(critic, user2)

Denby 0.16
McCarthy 0.18

Morgenstern 0.18
Puig 0.31

Travers 0.21
Turan 0.29

One way to make a recommendation for User2 would be to choose the most similar critic, and then
to choose the movie that they ranked most highly. This approach has a couple of drawbacks: (1)
it does nothing to smooth away any peculiarities of that critic’s rankings; and (2) in the case when
recommender systems are applied (e.g., online shops) the population of “critics” may be very large
indeed, and there may be quite a large number of similar user profiles. An alternative way to make a
ranking for User2 would be to weight the rating of each critic by the similarity to User2. An overall
score for each film can be obtained by summing these weighted rankings. If u is the user, and we have
C critics, then the estimated score given to film m by u, scu(m), is obtained as follows:

scu(m) =
1

∑C
c=1 sim(x̃u, x̃c)

C∑

c=1

sim(x̃u, x̃c) · xcm, (6)

where x̃u is a vector of ratings for the films seen by u, and x̃c is the vector of corresponding film
ratings from critic c. In this example, x̃u and x̃c are 3-dimensional vectors, whereas the original xc is a
6-dimensional vector. The term 1/

∑C
c=1 sim(x̃u, x̃c) is used to normalise the weighted sum of scores to

estimate the user’s score for the film.

We can compute an estimate of User2’s score for each film using equation (6). We’ll make the
computation explicit in a table:

Australia Hancock Milk
Similarity Score Sim · Score Score Sim · Score Score Sim · Score

Denby 0.16 3 0.48 9 1.44 9 1.44
McCarthy 0.18 7 1.26 3 0.54 8 1.44

Morgenstern 0.18 7 1.26 0 0.00 8 1.44
Puig 0.31 5 1.55 5 1.55 9 2.79

Travers 0.21 5 1.05 8 1.68 10 2.10
Turan 0.29 7 2.03 4 1.16 7 2.03

Total 1.33 7.63 6.37 11.24
Est. Score 5.7 4.8 8.5

So the recommender system would propose Milk to User2. But more than just proposing a single film,
it provides an estimate of the rating that User2 would provide to each film based on User2’s ratings
of other films, the estimated similarity of User2 to each critic, and the ratings of the critics to films
unseen by User2.
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Some questions:

• What do we do if not all the critics have seen the same set of movies? Are the distance/similarity
methods between different pairs of people comparable if they are computed across different
spaces (i.e., different sets of ratings)? Is there something we can do to make them more
comparable?

• How do we deal with the fact that some critics may score more highly on average than others?
Or that some critics have a wider spread of scores than others?

We can also solve the transposed problem: instead of measuring the similarity between people, we can
measure the similarity between films. In this case we will have a space whose dimension is the number
of critics, and each point in the space corresponds to a film. Transposing the previous data matrix:



3 7 4 9 9 7
7 5 5 3 8 8
7 5 5 0 8 4
5 6 8 5 9 8
5 8 8 8 10 9
7 7 8 4 7 8



T

=



3 7 7 5 5 7
7 5 5 6 8 7
4 5 5 8 8 8
9 3 0 5 8 4
9 8 8 9 10 7
7 8 4 8 9 8



,

each row corresponds to a feature vector for a film:

w1 = (3, 7, 7, 5, 5, 7)T

...

w6 = (7, 8, 4, 8, 9, 8)T ,

where w1 corresponds to Australia, w2 corresponds to Body of Lies, and so on.

We can then go ahead and compute the distances between films in the space of critics’ ratings, in a
similar way to before:

Australia Body of Lies Burn After Reading Hancock Milk Revolutionary Road

Australia 5.8 5.3 10.9 8.9 7.2
Body of Lies 5.8 3.7 6.6 5.9 4.0

Burn After Reading 5.3 3.7 8.9 7.0 4.5
Hancock 10.9 6.6 8.9 10.9 8.4

Milk 8.9 5.9 7.0 10.9 4.8
Revolutionary Road 7.2 4.0 4.5 8.4 4.8

Therefore if a user, for whom we have no history of ratings chooses Body of Lies, then based on our
stored critics’ ratings we would recommend Burn After Reading and Revolutionary Road as the two
most similar films.

To summarise:

1. We represented the rating data from C critics about M films (movies) as a C × M matrix.

2. Each row of this data matrix corresponds to a critic’s feature vector in “review space”.

3. We can compute the distance between feature vectors, to give measure of dissimilarity between
critics.
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4. We can use this information to construct a simple recommender system.

5. If we take the transpose of the data matrix, then each row corresponds to a film’s feature vector;
distance measures between these vectors correspond to dissimilarity between films.

3 Similarity using correlation

3.1 Normalisation

So far our estimate of similarity has been based on the Euclidean distance between feature vectors in a
review space. But this distance is not well normalised. For example, two critics may rank a set of films
in the same order, but if one critic gives consistently higher scores to all movies than the other, then the
Euclidean distance will be large and the estimated similarity will be small. In the data we have been
working with (Table 1) some critics do give higher scores on average: the mean review ratings per
critic range from 4.8 to 8.0.

One way to normalise the scores given by each critic is to transform each score into a standard
score1. The standard scores are defined such that the set of scores given by each critic have the
same sample mean and sample standard deviation. We first compute the sample mean and sample
standard deviation for each critic. Consider an M-dimensional feature vector corresponding to critic c,
xc = (xc1, xc2, . . . , xcM) , where xcm is critic c’s rating for movie m. We can compute the sample mean
x̄c and sample standard deviation sc for critic c as follows2:

x̄c =
1
M

M∑

m=1

xcm (7)

sc =

√√
1

M−1

M∑

m=1

(
xcm − x̄c

)2
. (8)

We then use these statistics to normalise xcm (the critic c’s score for movie m) to a standard score,

zcm =
xcm − x̄c

sc
. (9)

The z scores for a critic c are normalised with a mean of 0 (obtained by subtracting the mean score
from the xc scores) and a sample standard deviation of 1 (obtained by dividing by the sample standard
deviation of the xc scores). Thus using these normalised scores for each critic removes the offset effect
of differing means and the spread effect of differing variances.

3.2 Pearson Correlation Coefficient

There are many other ways that we could measure similarity. One measure that has been used a lot in
data mining, and collaborative filtering in particular, is a measure based on the correlation between

1Standard scores are also called z-values, z-scores, and normal scores.
2The ‘sample standard deviation’ is the square-root of the ‘sample variance’. Different books give different definitions

of the ‘sample variance’, which is an estimate of the ‘true’ variance of a population from a limited number of samples.
Equation (8) uses an ‘unbiased’ estimate of the true variance. Another version of variance replaces ‘M−1’ with ’M’, which
is normally called a ’population variance’, meaning the samples you have got are assumed to be the whole population
rather than its subset. This way of calculating variance gives a ’biased’ estimate if it is used as an estimate of the true
variance of a population. For large sample sizes, as commonly-found in machine learning, the difference usually doesn’t
matter. Matlab/Octave use the ‘M−1’ estimator by default, and Python’s scipy package uses the ‘M’ estimator by default,
although both have options to use the other.
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Figure 2: Plot of films in a 2-dimensional space defined by the ratings of David Denby and Peter
Travers. The best fit straight line for these points is also plotted.

users’ ratings. Rather than considering the distance between feature vectors as a way to estimate
similarity, we can consider the correlation between the critics scores. Figures 2 and 3 each plot films
in terms of the ratings of two specified critics, along with a best fit straight line. If the ratings of the
two critics are closely related (similar) then the best-fit line will (almost) touch every item; if the films
are generally far from the best fit line then the review scores are not well associated (dissimilar). We
can see that the scores of Travers and Denby (Figure 2) are much better correlated than the scores of
McCarthy and Denby (Figure 3); although Denby has lower ratings on average than that of Travers,
this does not affect the correlation.

To estimate the correlation between two sets of scores we use the Pearson Correlation Coefficient. To
estimate this we first normalise the scores for each critic to stand scores, using equations (7), (8) and
(9). We can then compute the Pearson correlation coefficient between critics c and d, rcd as 3 :

rcd =
1

M−1

M∑

m=1

zcm zdm (10)

=
1

M−1

M∑

m=1

(
xcm − x̄c

sc

) (
xdm − x̄d

sd

)
. (11)

If zcm tends to be large when zdm is large and zcm tends to be small when zdm is small, then the correlation
coefficient will tend towards 1. If zcm tends to be large when zdm is small and zcm tends to be small
when zdm is large, then the correlation coefficient will tend towards −1. If there is no relation between
critics c and d, then their correlation coefficient will tend towards 0.

In the above examples, the correlation between Denby and Travers is 0.76 and the correlation between

3 If we define sample covariace by scd =
1

M−1

M∑

m=1

(xcm − x̄c)(xdm − x̄d), equation (11) can be rewritte by rcd =
scd

scsd
.
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Figure 3: Plot of films in a 2-dimensional space defined by the ratings of David Denby and Todd
McCarthy. The best fit straight line for these points is also plotted

Denby and McCarthy is −0.12. For comparison the similarities based on Euclidean distance are 0.16
and 0.11.
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Exercise: Using the Python function you will write in Tutorial 3, show that the similarities between
critics obtained using the correlation coefficient are as below. Compare these similarities with those
obtained using the Euclidean distance.

Similarities based on Euclidean distances between critics:

Denby McCarthy Morgenstern Puig Travers Turan

Denby 1 0.11 0.09 0.14 0.16 0.11
McCarthy 0.11 1 0.17 0.19 0.12 0.20

Morgenstern 0.09 0.17 1 0.12 0.09 0.13
Puig 0.14 0.19 0.12 1 0.20 0.24

Travers 0.16 0.12 0.09 0.20 1 0.15
Turan 0.11 0.20 0.13 0.24 0.15 1

Pearson correlation coefficient similarities between critics

Denby McCarthy Morgenstern Puig Travers Turan

Denby 1 -0.12 -0.36 0.14 0.76 -0.55
McCarthy -0.12 1 0.75 0.53 0.18 0.61

Morgenstern -0.36 0.75 1 0.44 -0.04 0.64
Puig 0.14 0.53 0.44 1 0.73 0.65

Travers 0.76 0.18 -0.04 0.73 1 0.08
Turan -0.55 0.61 0.64 0.65 0.08 1

4 Reading

Further reading on recommender systems in chapter 2 of Segaran.
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